Skip to main content
Log in

Proferrorosamines and phytopathogenicity in Erwinia spp.

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Proferrorosamine A (pFR A) of the plant pathogenic bacterium Erwinia rhapontici was shown to inhibit growth of wheat and cress seedlings at the ≥ 10 ppm level. When the seeds were continuously exposed to 100 ppm pFR A, the germination of cress and wheat seeds was inhibited up to 90% and 80%, respectively. The inhibition could be reversed through addition of equimolar amounts of ferrous iron, which indicates that the strong iron chelating capability of pFR A is responsible for the observed effect. The Fe(II) in the corresponding iron complex, ferrorosamine A, was found to be remarkably resistant towards oxidation by hydrogen peroxide and therefore redox-cycling in the Haber-Weiss cycle. It is thus conceivable that pFR A may also attenuate the generation of reactive hydroxyl radicals during the resistant and wound reaction. The apparent correlation between proferrorosamine production and virulence in erwiniae was further corroborated through the analysis of Erwinia persicinus, a newly described species. Using electrospray ionization mass spectrometry, E. persicinus was shown to produce pFR A and pFR B, and preliminary evidence for the phytopathogenicity of E. persicinus was found in cress. Inhibition of wheat seedlings by E. persicinus could not be demonstrated, but this may be due to technical difficulties or different host specificities. Taken together, our results indicate that the phytopathogenicity of E. rhapontici and E. persicinus may, as least in part, be due to the release of proferrorosamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradbury JF. 1986 Guide to Plant Pathogenic Bacteria. Farnham House, Farnham Royal, Slough: CAB International; 332.

    Google Scholar 

  • Brenner DJ, Neto JR, Steigerwalt AG, Robbs CF. 1994 Erwinia nulandiiis a subjective synonym of Erwinia persicinus. Int J Syst Bacteriol 44,282–284.

    Google Scholar 

  • Cadenas E. 1989 Biochemistry of oxygen toxicity. Annu Rev Biochem 58,79–110.

    Google Scholar 

  • Campbell WP. 1958 A cause of pink seeds in wheat. Plant Dis Rep 42,1272.

    Google Scholar 

  • Davis MT, Stahl DC, Lee TD. 1995 Low flow HPLC solvent delivery system designed for tandem capillary liquid chromatography mass spectrometry. J Am Soc Mass Spectrom 6,571–577.

    Google Scholar 

  • De Vos P, Van de Woestyne M, Van Canneyt M, Verstraete W, Kersters K. 1993 Identification of pro-ferrorosamine producing Pseudomonassp. strain GH (LMG-11358) as Erwinia rhapontici. Syst Appl Microbiol 16,252–255.

    Google Scholar 

  • Feistner G. 1990 Pigments. In: Klement Z, Rudolph K and Sands DC, eds. Methods in Phytobacteriology. Budapest: Akadémiai Kiado; 233–244.

    Google Scholar 

  • Feistner GJ. 1995 Liquid chromatography-electrospray tandem mass spectrometry of dansylated polyamines and basic amino acids. J Mass Spectrom 30,1546–1552.

    Google Scholar 

  • Feistner GJ, Ishimaru C. 1996 Proferrioxamine profiles of Erwinia herbicolaand related bacteria. BioMetals 9,337–344.

    Google Scholar 

  • Feistner GJ, Korth H, Ko H, Pulverer G, Budzikiewicz H. 1983 Ferrorosamine A from Erwinia rhapontici. Curr Microbiol 8,239–243.

    Google Scholar 

  • Feistner GJ, Mavridis A, Rudolph K. 1992 Proferro-rosamines: Potential virulence factors of Erwinia rhaponticiand Erwinia persicinus. Presented at the Sixth International Symposium on Molecular Plant-Microbe Interactions, Seattle, WA.

  • Feistner GJ, Stahl DC, Gabrik AH. 1993 Proferrioxamine siderophores of Erwinia amylovora-a capillary liquid chromatographic electrospray tandem mass spectrometric study. Org Mass Spectrom 28,163–175.

    Google Scholar 

  • Goodman RN, Novacky AJ. 1994 The Hypersensitive Reaction in Plants to Pathogens: A Resistance Phenomenon. St. Paul, Minnesota, USA: Am Phytopathol Soc Press.

    Google Scholar 

  • Goto M, Matsumoto K. 1986 Taxonomic study on soft rot bacteria isolated from diseased rhizomes and roots of wasabi (Eutrema wasabiMaxim.).Ann Phytopathol Soc Jpn 52,69–77.

    Google Scholar 

  • Grimont PAD, Grimont F. 1984 Genus VIII. SerratiaBizio 1823. In: Krieg NR and Holt JG, eds. Bergey's Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins Co.; 477–484.

    Google Scholar 

  • Grothues D, Rudolph K. 1991 Macrorestriction analysis of plant pathogenic Pseudomonasspecies and patho-vars. FEMS Microbiology Letters 79,83–88.

    Google Scholar 

  • Hao MV, Brenner DJ, Steigerwalt AG, Kosako Y, Komagata K. 1990 Erwinia persicinus, a new species isolated from plants. Int J Syst Bacteriol 40,379–383.

    Google Scholar 

  • Howe ET, Simmonds PM. 1937 Bacterial pink blotch of wheat. Proc Can Phytopathol Soc 7,6.

    Google Scholar 

  • Huang HC, Phillippe LM, Phillippe RC. 1990 Pink seed of pea: a new disease caused by Erwinia rhapontici. Can J Plant Pathol 12,445–448.

    Google Scholar 

  • James WO. 1956 The effect of 2,2'-dipyridyl on plant respiration. New Phytologist 55,269–279.

    Google Scholar 

  • Johanningmeier U. 1988 Possible control of transcript levels by chlorophyll precursors in Chlamydomonas. Eur J Biochem 177,417–424.

    Google Scholar 

  • Letal JR. 1976 Crown rot of rhubarb in Alberta. Can Plant Dis Survey 56,67–68.

    Google Scholar 

  • Liu W-C, Fisher MS, Wells JS, et al. 1981 Siderochelin, a new ferrous-ion chelating agent produced by Nocardia. J Antibiot 34,791–799.

    Google Scholar 

  • Luisetti J, Rapilly F. 1967 Sur une altération d'origine bactérienne des grains de Blé. Ann Épiphyt 18,483–493.

    Google Scholar 

  • McMullen MP, Stack RW, Miller JD, Bromel MC, Youngs VL. 1984 Erwinia rhapontici, a bacterium causing pink wheat kernels. Proc North Dakota Acad Sci 38,78.

    Google Scholar 

  • Metcalfe G. 1940 Bacterium rhaponticum(Millard) Dowson, a cause of crown-rot disease of rhubarb. Ann Appl Biol 27,502–508.

    Google Scholar 

  • Millard WA. 1924 Crown rot of rhubarb. Bull Univ Leeds 138,28.

    Google Scholar 

  • Mitscher LA, Hogberg T, Drake SO, et al. 1984 Isolation and structural determination of siderochelin C, a fermentation product of an unusual Actinomycessp. J Antibiot 37,1260–1263.

    Google Scholar 

  • Ohuchi A, Ohsawa T, Nishimura J. 1983 Two pathogenic bacteria, Erwinia rhapontici(Millard 1924) Burkholder 1948 and Pseudomonas marginalispv. marginalis(Brown 1918) Stevens 1925, causing a soft rot of onion. Ann Phytopathol Soc Jpn 49,619–626.

    Google Scholar 

  • Oster U, Blos I, Rudiger W. 1991 The greening process in cress seedlings. 3. Age-dependent changes in the capacity of the tetrapyrrole pathway. Z Naturforschg 46c,1052–1058.

    Google Scholar 

  • Pouteau-Thouvenot M, Gaudemer A, Barbier M. 1965 Sur la ferrorosamine. Pigment de Bacillus roseus fluorescens. Bull Soc Chim Biol 47,2085–2094.

    Google Scholar 

  • Pouteau-Thouvenot M, Gaudemer A, Barbier M. 1968 Structure chimique de la proferrorosamine B. Bull Soc Chim Biol 50,222–225.

    Google Scholar 

  • Pouteau-Thouvenot M, Choussy M, Gaudemer A, Barbier M. 1970 Sur la structure chimique de l'anhydro-pro-ferrorosamine B. Bull Soc Chim Biol 52,51–58.

    Google Scholar 

  • Roberts P. 1974 Erwinia rhapontici(Millard) Burkholder associated with pink grain of wheat. J Appl Bact 37,353–358.

    Google Scholar 

  • Rudolph K. 1976 Non-specific toxins. In: Heitefuss R and Williams PH, eds. Encylopedia of Plant Physiology, New Series, Volume 4: Physiological Plant Pathology. Berlin: Springer-Verlag; 270–315.

    Google Scholar 

  • Rudolph K. 1990 Generally suited media. In: Klement Z, Rudolph K and Sands DC, eds. Methods in Phytobacteriology. Budapest: Akadémiai Kiado; 59.

    Google Scholar 

  • Schuster ML, Schuster AM, Nuland DJ. 1981 A new bacterium pathogenic for beans (Phaseolus vulgaris). Fitopatol Bras 6,345–358.

    Google Scholar 

  • Sellwood JE, Lelliott RA. 1978 Internal browning of hyacinth caused by Erwinia rhapontici. Plant Pathol 27,120–124.

    Google Scholar 

  • Shaban MA, Kabashnaya LB, Gvozdyak RI, Vakulenko AK. 1991 Bacteria of genus Erwinia-Agents of tomato diseases in the Ukraine. Mikrobiol Zhurnal 53,58–63.

    Google Scholar 

  • Shiman R, Neilands JB. 1965 Isolation, characterization, and synthesis of pyrimine, an iron(II)-binding agent from PseudomonasGH. Biochemistry 4,2233–2236.

    Google Scholar 

  • Vande Woestyne M, Verstraete W. 1992 Regulation and cloning of the proferrorosamine genes of Erwinia rhaponticiLMG11358. Med Fac Landbouww Univ Gent 57/4b,2063–2069.

    Google Scholar 

  • Vande Woestyne M, Bruyneel B, Mergeay M, Verstraete W. 1991 The Fe2+ chelator proferrorosamine A is essential for the siderophore-mediated uptake of iron by Pseudomonas roseus fluorescens. Appl Environ Microbiol 57,949–954.

    Google Scholar 

  • Volcani Z. 1955 Erwinia rhaponticipathogenic to Citrus fruit. Bull Res Coun Israel 5,129–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feistner, G.J., Mavridis, A. & Rudolph, K. Proferrorosamines and phytopathogenicity in Erwinia spp.. Biometals 10, 1–10 (1997). https://doi.org/10.1023/A:1018397031232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018397031232

Navigation