Skip to main content
Log in

Evaluation of diallel analysis using β-glucuronidase activity from transgenes in Nicotiana tabacum

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A full diallel analysis is a tool for selection in plant breeding that has been subject to many discussions and controversies regarding its interpretation and merits. The analysis of well-defined transgenes by such an approach permits assessment of the value of diallel analyses. The performance of the Eberhart/Gardner diallel approach is analysed for the β-glucuronidase (GUS) activity of six well-defined, homozygous one-locus tobacco (Nicotiana tabacum L.) transgenic lines, each carrying differently located alleles of the GUS gene, and the nulliplex wild type. Tobacco is an inbreeding plant species, therefore all these lines are fully isogenic apart from the T-DNA insertion. The analysis shows that additivity of GUS gene activity as well as epistatic gene silencing translate well in the diallel parameters of general combining ability (GCA) and specific combining ability (SCA) or more detailed versions thereof, when compared to a parsimonious model based on the precise genetic constitution of the transgenic plants lines used as parents. The tobacco line with the highest GUS activity also has the highest GCA, demonstrating that an evaluation of parental phenotype would be sufficient for determining breeding potential. In case of the epistatic gene silencing, however, there is no positive correlation between GCA and parental performance, the reduction in GUS activity is more severe than is to be expected on the basis of parental performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, R.W., 1960. Principles of Plant Breeding. Wiley, New York.

    Google Scholar 

  • Baker, R.J., 1978. Issues in diallel analysis. Crop Sci 18: 533–536.

    Article  Google Scholar 

  • Bos, I. & P. Caligari, 1995. Selection Methods in Plant Breeding. Chapman and Hall, London.

    Google Scholar 

  • Bulmer, M.G., 1985. The Mathematical Theory of Quantitative Genetics. Clarendon Press, Oxford.

    Google Scholar 

  • Burow, M.D. & J.G. Coors, 1994. Diallel: a microcomputer program for the simulation and analysis of diallel crosses. Agronomy J 86: 154–158.

    Article  Google Scholar 

  • Christie, B.R. & V.I. Shattuck, 1992. The diallel cross: design, analysis, and use for plant breeders. Plant Breed Rev 9: 9–36.

    Google Scholar 

  • Conner, A.J. & M.C. Christey, 1994. Plant breeding and seed marketing options for the introduction of transgenic insect-resistant crops. Blocontrol Sci Technol 4: 463–473.

    Article  Google Scholar 

  • Dongyu, Q., Z. Dewei, M.S. Ramanna & E. Jacobsen, 1996. A comparison of progeny from diallel crosses of diploid potato with regard to the frequencies of 2n pollen grains. Euphytica 92: 313–320.

    Article  Google Scholar 

  • Eberhart, S.A. & C.O. Gardner, 1966. A general model for genetic effects. Biometrics 22: 864–881.

    Article  Google Scholar 

  • Gilbert, N.E., 1958. Diallel cross in plant breeding. Heredity 12: 477–492.

    Google Scholar 

  • Griffing, B., 1956. Concept of general and specific combining ability in relation to diallelcrossing systems. Aust J Biol Sci 9: 463–493.

    Google Scholar 

  • Hallauer, A.R. & J.B. Miranda, 1981. Quantitative Genetics in Maize Breeding. Iowa State University Press, Ames.

    Google Scholar 

  • Hayman, B.I., 1954. The theory and analysis of diallel crosses. Genetics 39: 789–809.

    PubMed  CAS  Google Scholar 

  • Hayman, B.I., 1960. The theory and analysis of diallel crosses III. Genetics 45: 155–172.

    PubMed  CAS  Google Scholar 

  • Hobbs, S.L.A., P. Kpodar & C.M.O. DeLong, 1990. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15: 851–864.

    Article  PubMed  CAS  Google Scholar 

  • Hobbs, S.L.A., T.D. Warkentin & C.M.O. DeLong, 1993. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Jana, S., 1975. Genetic analysis by means of a diallel graph. Heredity 35: 1–19.

    Google Scholar 

  • Jansen, R.C., 1996. Complex plant traits: time for polygenic analysis. Trends Plant Sci 1: 89–94.

    Article  Google Scholar 

  • Kearsey, M.J. & H.S. Pooni, 1996. The Genetical Analysis of Quantitative Traits. Chapman & Hall, London.

    Google Scholar 

  • Liu, K.D., Z.Q. Zhou, C.G. Xu, Q. Zhang & M.A. Saghai Maroof, 1996. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica 90: 275–280.

    Article  Google Scholar 

  • Mather, K. & J.L. Jinks, 1982. Biometrical Genetics 3rd Ed., Chapman and Hall, London.

    Google Scholar 

  • Mehta, H., K.R. Sarkar & S.K. Sharma, 1992. Genetic analysis of photosynthesis and productivity in corn. Theor Appl Genet 84: 242–255.

    Article  Google Scholar 

  • Mlynárová, L., A. Loonen, J. Heldens, R.C. Jansen, P. Keizer, W.J. Stiekema & J.P. Nap, 1994. Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6: 417–426.

    Article  PubMed  Google Scholar 

  • Mlynárová, L., R.C. Jansen, A.J. Conner, W.J. Stickema & J.P. Nap, 1995. The MAR-mediated reduction in position effect can be uncoupled from copy-number-dependent expression in transgenic plants. Plant Cell 7: 599–609.

    Article  PubMed  Google Scholar 

  • Mlynárová, L., L.C.P. Keizer, W.J. Stiekema & J.P. Nap, 1996. Approaching the lower limits of transgene variability. Plant Cell 8: 1589–1599.

    Article  PubMed  Google Scholar 

  • Nap, J.P., W.G. Dirkse, J. Louwerse, J. Onstenk, R. Visser, A. Loonen, F. Heidekamp & W.J. Stiekema, 1992. Analysis of the region in between two closely linked patatin genes: Class II promoter activity in tuber, root and leaf. Plant Mol Biol 20: 683–694.

    Article  PubMed  CAS  Google Scholar 

  • Nap, J.P., P. Keizer & R. Jansen, 1993a. First-generation transgenic plants and statistics. Plant Mol Biol Rep 11: 156–164.

    Google Scholar 

  • Nap, J.P., M. van Spanje, W.G. Dirkse, G. Baarda, L. Mlynárová, A. Loonen, P. Grondhuis & W.J. Stiekema, 1993b. Activity of the promoter of the Lhca.St.1 gene, encoding the potato apoprotein 2 of the light-harvesting complex of photosystem I, in transgenic potato and tobacco plants. Plant Mol Biol 23: 605–612.

    Article  PubMed  CAS  Google Scholar 

  • Nap, J.P., A.J. Conner, L. Mlynárová, W.J. Stiekema & R.C. Jansen, 1997. Dissection of a synthesized quantitative trait to characterize transgene interactions. Genetics 147: 315–320.

    PubMed  CAS  Google Scholar 

  • Payne, R.W., P.W. Lane, P.G.N. Digby, S.A. Harding, P.K. Leech, H.R. Simpson, A.D. Todd, S.J. Welham, R.P. White, R. Thompson, G. Tunnicliffe Wilson, L.G. Underhill & P.G. Verrier, 1993. Genstat 5 Release 3 Reference Manual. Clarendon Press, Oxford.

    Google Scholar 

  • Ramsay, L.D., J.E. Bradshaw & M.J. Kearsey, 1994. The inheritance of quantitative traits in swedes (Brassica napus L. spp. rapifera). Diallel analysis of dry matter yield. J Genet & Breed 49: 253–258.

    Google Scholar 

  • Singh, O. & R.S. Paroda, 1984. A comparison of different diallel analyses. Theor Appl Genet 67: 541–545.

    Article  Google Scholar 

  • Sokal, R.R. & F.J. Rohlf, 1995. Biometry, 3rd Ed. Freeman and Co., New York.

    Google Scholar 

  • Spchar, C.R., 1995. Diallel analysis for mineral element absorption in tropical adapted soybeans (Glycine max (L.) Merrill). Theor Appl Genet 90: 707–713.

    Google Scholar 

  • Wernsman, E.A. & D.F. Matzinger, 1980. Tobacco. In: Fehr WR and Hadley H (eds) Hybridization of Crop Plants, pp. 657–668. American Society of Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Wright, A.J., 1985. Diallel designs, analyses, and reference populations. Heredity 54: 307–311.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conner, A.J., Keizer, L.P., Mlynárová, L. et al. Evaluation of diallel analysis using β-glucuronidase activity from transgenes in Nicotiana tabacum. Euphytica 102, 161–168 (1998). https://doi.org/10.1023/A:1018396632135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018396632135

Navigation