Skip to main content
Log in

The effect of ring currents on carbon chemical shifts in cytochromes

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Calculations suggest that some carbon chemical shifts in proteinsshould have large ring current shifts (>1 ppm). We present13C, 15N and 1H assignments forcytochrome c2 from Rhodospirillum rubrum, compare these withshifts for other cytochromes c, and show that the calculated ring currentshifts are similar to experimentally observed shifts, but that there remainsubstantial conformation-dependent shifts of side-chain carbons. Ringcurrent shifts as large as 6 ppm are observed. We show that the ring currenteffects do not seriously affect the Chemical Shift Index method fordelineating secondary structure, but may have an impact on more precisemethods for generating structural constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartsch, R.G. (1971) Methods Enzymol., 23, 344–363.

    Google Scholar 

  • Bax, A. and Ikura, M. (1991) J. Biomol. NMR, 1, 99–104.

    Google Scholar 

  • Blanchard, L., Blackledge, M., Marion, D. and Guerlesquin, F. (1996) FEBS Lett., 389, 203–209.

    Google Scholar 

  • Caffrey, M., Brutscher, B., Simorre, J.-P., Fitch, J., Cusanovich, M. and Marion, D. (1994) Eur. J. Biochem., 221, 63–75.

    Google Scholar 

  • Celda, B., Biamonti, C., Arnau, M.J., Tejero, R. and Montelione, G.T. (1995) J. Biomol. NMR, 5, 161–172.

    Google Scholar 

  • Chau, M., Cai, M. and Timkovich, R. (1990) Biochemistry, 29, 5076–5087.

    Google Scholar 

  • de Dios, A.C., Pearson, J.G. and Oldfield, E. (1993a) Science, 260, 1491–1496.

    Google Scholar 

  • de Dios, A.C., Pearson, J.G. and Oldfield, E. (1993b) J. Am. Chem. Soc., 115, 9768–9773.

    Google Scholar 

  • Gao, Y., Boyd, J. and Williams, R.J.P. (1990) Eur. J. Biochem., 194, 355–365.

    Google Scholar 

  • Grant, D.M. and Paul, E.G. (1964) J. Am. Chem. Soc., 86, 2984–2990.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992a) J. Magn. Reson., 96, 432–440.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992b) J. Am. Chem. Soc., 114, 6291–6293.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185–204.

    Google Scholar 

  • Haigh, C.W. and Mallion, R.B. (1972) Org. Magn. Reson., 4, 203–228.

    Google Scholar 

  • Johnson, C.E. and Bovey, F.A. (1958) J. Chem. Phys., 29, 1012–1014.

    Google Scholar 

  • Kabsch, W. and Sander, C. (1983) Biopolymers, 22, 2577–2637.

    Google Scholar 

  • Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496–514.

    Google Scholar 

  • Kay, L.E., Xu, G.-Y., Singer, A.U., Muhandiram, D.R. and Forman-Kay, J.D. (1993) J. Magn. Reson., B101, 333–337.

    Google Scholar 

  • Kay, L.E. (1995) Curr. Opin. Struct. Biol., 5, 674–681.

    Google Scholar 

  • Kuszewski, J., Qin, J., Gronenborn, A.M. and Clore, G.M. (1995) J. Magn. Reson., B106, 82–96.

    Google Scholar 

  • Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.

    Google Scholar 

  • Marion, D., Ikura, M. and Bax, A. (1989a) J. Magn. Reson., 84, 425–430.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989b) J. Magn. Reson., 85, 393–399.

    Google Scholar 

  • Ösapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436–9444.

    Google Scholar 

  • Pearson, J.G., Wang, J.-F., Markley, J.L., Le, H. and Oldfield, E. (1995) J. Am. Chem. Soc., 117, 8823–8829.

    Google Scholar 

  • Salemme, F., Freer, S., Xuong, N., Alden, R. and Kraut, J. (1973) J. Biol. Chem., 248, 240–244.

    Google Scholar 

  • Saunders, M., Wishnia., A. and Kirkwood, J.G. (1957) J. Am. Chem. Soc., 79, 3289–3290.

    Google Scholar 

  • Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Google Scholar 

  • Szilágyi, L. (1995) Prog. NMR Spectrosc., 27, 325–444.

    Google Scholar 

  • Williamson, M.P., Asakura, T., Nakamura, E. and Demura, M. (1992) J. Biomol. NMR, 2, 83–98.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., {vn222}, 311–333.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1992) Biochemistry, {vn31}, 1647–1651.

    Google Scholar 

  • Wishart, D.S. and Sykes, B.D. (1994a) Methods Enzymol., 239, 363–392.

    Google Scholar 

  • Wishart, D.S. and Sykes, B.D. (1994b) J. Biomol. NMR, 4, 171–180.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995) J. Biomol. NMR, {vn6}, 135–140.

    Google Scholar 

  • Yu, L.P. and Smith, G.M. (1990) Biochemistry, 29, 2914–2919.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, L., Hunter, C.N. & Williamson, M.P. The effect of ring currents on carbon chemical shifts in cytochromes. J Biomol NMR 9, 389–395 (1997). https://doi.org/10.1023/A:1018394410613

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018394410613

Navigation