Skip to main content

The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers

Abstract

The genomic organisation and diversity of the Ty1-copia group retrotransposons has been investigated in several crop plants and their relatives from both dicotyledonous and monocotyledonous families, including potato ( Solanum tuberosum), faba beans ( Vicia faba), Vicia melanops, Vicia sativa, barley ( Hordeum vulgare), rye ( Secale cereale), and onion ( Allium cepa). Extreme heterogeneity in the sequence of the Ty1-copia retrotransposons from all these plants was revealed following sequence analysis of reverse transcriptase fragments. The estimated copy numbers of the Ty1-copia group retrotransposons for the genomes of S. tuberosum, L. esculentum, A. cepa, S. cereale, and V. faba is highly variable, ranging from a few hundred to approximately a million copies per genome. In situ hybridisation data from metaphase and prophase chromosomes of V. faba, S. cereale, and H. vulgare suggest that retrotransposon sequences are dispersed throughout the euchromatic regions of the genome but are almost undetectable in most heterochromatic regions. In contrast, similar data from metaphase chromosomes of A. cepa suggests that although retrotransposon sequences are dispersed throughout the euchromatic regions of the genome, they are predominantly concentrated in the terminal heterochromatin. These results are discussed in the context of the role played by the Ty1-copia group retrotransposons in the evolution of the plant genome. Lastly, the application of retrotransposon sequences as genetic markers for mapping genomes and for studying genetic biodiversity in plants is presented.

This is a preview of subscription content, access via your institution.

References

  • Bennetzen, J.L., 1996. The contributions of retroelements to plant genome organisation, function and evolution. Trends in Microbiol. 4: 347–353.

    CAS  Article  Google Scholar 

  • Bingham, P.M. & Z. Zachar, 1989. Retrotransposons and FB elements from Drosophila melanogaster, pp. 485–502 in Mobile DNA, edited by D.E. Berg and M.M. Howe. American Society of Microbiology, Washington DC.

    Google Scholar 

  • Boeke, J.D. & V.G. Corces, 1989. Transcription and reverse-transcription of retrotransposons. Ann. Rev. Microbiol. 43: 403–434.

    CAS  Article  Google Scholar 

  • Brandes, A., J.S. Heslop-Harrison, A. Kamm, S. Kubis, R.L. Doudrick & T. Schmidt, 1997. Comparative analysis of the chromosomal and genomic organisation of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol. Biol. 33: 11–21.

    PubMed  CAS  Article  Google Scholar 

  • Carmena, M. & C. Gonzalez, 1995. Transposable elements map in a conserved pattern of distribution extending from Beta-heterochromatin to centromeres in Drosophila. Chromosoma 103: 676–684.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1986. Genetic divergence between transposable elements. Genet. Res. (Cam) 48: 111–118.

    CAS  Article  Google Scholar 

  • Deragon, J.-M., B.S. Landry, T. Pelissier, S. Tutois, S. Tourmente & G. Picard, 1994. An analysis of retroposition in plants based on a family of SINEs from Brassica napus. J. Mol. Evol. 39: 379–386.

    Article  Google Scholar 

  • Doolittle, R.F. & D. Feng, 1990. Nearest neighbour procedure for relating progressively aligned amino acid sequences, pp. 659–669 in Methods in enzymology, edited by R.F. Doolittle. New York Academic Press, New York, 183.

    Google Scholar 

  • Feng, D.F. & R.F. Doolittle, 1990. Progressive alignment and phylogenetic tree construction of protein sequences, pp. 375–387 in Methods in enzymology, edited by R.F. Doolittle. New York Academic Press, New York, 183.

    Google Scholar 

  • Finnegen, D.J. 1989. Eukaryotic transposable elements and evolution. Trends Genet. 5: 103–107.

    Article  Google Scholar 

  • Flavell, A.J., D. Smith & A. Kumar, 1992. Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol. Gen. Genet. 231: 233–242.

    PubMed  CAS  Google Scholar 

  • Flavell, A.J., E. Dumbar, R. Anderson, S.R. Pearce, R. Hartley & A. Kumar, 1992. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucl. Acids Res. 20: 3639–3644.

    PubMed  CAS  Google Scholar 

  • Flavell, A.J., S.R. Pearce & A. Kumar, 1994. Plant transposable elements and the genome. Cur. Opin. Genet. and Develop. 4: 838–844.

    CAS  Article  Google Scholar 

  • Flavell, A.J., S.R. Pearce, J.S. Heslop-Harrison & A. Kumar, 1997. The evolution of Ty1-copia retrotransposons in eukarytoic genome. Genetica Vol.

  • Grandbastien, M.-A., 1992. Retroelements in higher plants. Trends Genet. 8: 103–108.

    PubMed  CAS  Google Scholar 

  • Grandbastien, M.-A., C. Audeon, J.M. Cascuberta, P. Grappin, H. Lucas, C. Moreau & S. Pouteau, 1995. Functional analysis of the tobacco Tnt1 retrotransposon. Genetica 93: 181–189.

    Article  Google Scholar 

  • Grandbastien, M.-A., H. Lucas, J.-B. Morel, C. Mhiri, S. Vernhettes & J.M. Casacuberta, 1997. The expression of the tobacco Tnt1 retrotransposon is linked to the plant defense responses. Genetica 100: 241–252.

    PubMed  CAS  Article  Google Scholar 

  • Heslop-Harrison, J.S., A. Brandes, S. Taketa, T. Schmidt, A.V. Vershinin, E.G. Alkhimova, A. Kamm, R.L. Doudrick, T. Schwarzacher, A. Katsiotis, S. Kubis, A. Kumar, S.R. Pearce, A.J. Flavell & G.E. Harrison, 1997. The chromosomal distri-bution of Ty1-copia group retrotransposable elements in higher.216 plants and their implications for genome evolution. Genetica 100: 197–204.

    PubMed  CAS  Article  Google Scholar 

  • Hirochika, H., 1993. Activation of tobacco retrotransposons during tissue-culture. EMBO J. 12: 2521–2528.

    PubMed  CAS  Google Scholar 

  • Hirochika, H. & R. Hirochika, 1993. Ty1-copia retrotransposons as ubiquitous components of plant genomes. Jpn. J. Genet. 68: 35–46.

    PubMed  CAS  Article  Google Scholar 

  • Hirochika, H., H. Otsuki, M. Yoshikawa, Y. Ossuki, K. Sugimoto & S. Takeda, 1996a. Autonomous transposition of the tobacco retrotransposons Tto1 in rice. Plant Cell 8: 725–734.

    PubMed  CAS  Article  Google Scholar 

  • Hirochika, H., K. Sugimoto, Y. Ossuki, H. Tsugaawa & W. Kanda, 1996b. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93: 7783–7788.

    PubMed  CAS  Article  Google Scholar 

  • Kamm, A., R.L. Doudrick, J.S. Heslop-Harrison & T. Schmidt, 1996. The genomic and physical organisation of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var elliottii and other gymnosperms. Proc. Natl. Acad. Sci. USA 93: 2708–2713.

    PubMed  CAS  Article  Google Scholar 

  • Katsiotis, A., T. Schmidt & J.S. Heslop-Harrison, 1996. Chromosomal and genomic organisation of Ty1-copia-like retrotransposon sequences in the genus Avena. Genome 39: 410–417.

    PubMed  CAS  Google Scholar 

  • Knoop, V., M. Unseld, J. Mariebfeld, P. Brandt, S. Sunkel, H. Ullrich & A. Brennicke, 1996. Copia, gypsy and LINE-like retrotrans-poson fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142: 579–585.

    PubMed  CAS  Google Scholar 

  • Konieczny, A., D.F. Voytas, M.P. Cummings & F.M. Ausubel, 1991. Asuperfamily of Arabidopsis thaliana retrotransposons. Genetics 127: 801–809.

    PubMed  CAS  Google Scholar 

  • Kumar, A., 1996. The adventures of the Ty1-copia group of retro-transposons in plants. Trends Genet. 12: 41–43.

    PubMed  CAS  Article  Google Scholar 

  • Kumar, A., S.R. Pearce, G. Harrison, J.S. Heslop-Harrison & A.J. Flavell, 1994. The Ty1-copia group retrotransposons in plants. Annual Report of the Scottish Crop Research Institute, 1994: 53–56.

    Google Scholar 

  • Leeton, P.J. & D.R. Smyth, 1993. An abundant LINE like element amplified in the genome of Lilium speciosum. Mol. Gen. Genet. 237: 97–104.

    PubMed  CAS  Article  Google Scholar 

  • Lindauer, A., D. Frazer, M. Burderlein & R. Schmitt, 1993. Reverse transcriptase families and a Copia-like retrotransposon in the green alga Volvox carteri. FEBS Lett. 319: 261–266.

    PubMed  CAS  Article  Google Scholar 

  • Manninen, I. & A.H. Schulman, 1993. BARE-1 a copia-like retroelement in barley (Hordeum vulgare). Plant Mol. Biol. 22: 829–864.

    PubMed  CAS  Article  Google Scholar 

  • Moreau, M., J.B. Morel, C. Audeon, M. Ferault, M.-A. Grandbastien & H. Lucas, 1996. Regulation of expression of the tobacco Tnt1 retrotransposon in heterologous species following pathogen-related stresses. Plant J. 9: 409–419.

    Article  Google Scholar 

  • Moore, G., K.M. Devos, Z. Wang & M.D. Gale, 1995. Grasses line up and form a circle. Curr. Biol. 5: 737–739.

    PubMed  CAS  Article  Google Scholar 

  • Moore, G., W. Cheung, T. Schwarzacher & R.B. Flavell, 1991. BIS 1, a major component of the cereal genome and a tool for studying genomic organisation. Genomics 10: 469–476.

    PubMed  CAS  Article  Google Scholar 

  • Pearce, S.R., G. Harrison, D. Li, J.S. Heslop-Harrison, A. Kumar & A.J. Flavell, 1996a. The Ty1-copia group retrotransposons in Vici a species: copy number, sequence heterogeneity and chromosomal localisation. Mol. Gen. Genet. 250: 305–315.

    PubMed  CAS  Google Scholar 

  • Pearce, S.R., U. Pich, G. Harrison, J.S. Heslop-Harrison, A.J. Flavell, I. Schubert & A. Kumar, 1996b. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res. 4: 365–371.

    Article  Google Scholar 

  • Pearce, S.R., A.J. Flavell & A. Kumar, 1996c. Activation of the transcript Ty1-copia retrotransposons in protoplasts of potato (Solanum tuberosum). Plant Cell Rept. 15: 949–953.

    CAS  Article  Google Scholar 

  • Pearce, S.R., G. Harrison, J.S. Heslop-Harrison, A.J. Flavell & A. Kumar, 1997. Characterisation and genomic organisation of the Ty1-copia group retrotransposons in rye (Secale cereale). Genome 40: 617–625.

    PubMed  CAS  Google Scholar 

  • Pélissier, T., S. Tutois, J.-M. Deragon, S. Tourmente, S. Genestier & G. Picard, 1995. Athila, a new retroelement from Arabidopsis thaliana. Genetica 97: 141–151.

    Article  Google Scholar 

  • Pimpinelli, S., M. Berloco, L. Fanti, P. Dimitri, E. Bonaccorsi, R. Marcheti, R. Caizzi, C. Caggese & M. Gatti, 1995. Transposable elements are stable components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 92: 3804–3808.

    PubMed  CAS  Article  Google Scholar 

  • Pouteau, S., E. Huttner, M.-A. Grandbastien & M. Caboche, 1991. Specific expression of the tobacco Tnt1 retrotransposons in protoplasts. EMBO J. 10: 1911–1918.

    PubMed  CAS  Google Scholar 

  • SanMiguel, P., A. Tikhonov, Y.K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Behan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova & J.L. Bennetzen, 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 273: 765–769.

    Article  Google Scholar 

  • Schmidt, T., S. Kubis & J.S. Heslop-Harrison, 1995. Analysis and chromosomal localisation of retrotransposons in sugarbeet (Beta vulgaris L.) LINEs and Ty1-Copia-like elements as major components of the genome. Chromosome Res. 3: 335–345.

    PubMed  CAS  Article  Google Scholar 

  • Schwarzacher, T., A. R. Leitch & J.S. Heslop-Harrison, 1994. DNA in situ hybridization-methods for light microscopy, pp. 127–155 in Plant Cell Biology: A practical approach, edited by N. Harris and K.J. Oparka. Oxford University Press, Oxford.

    Google Scholar 

  • Smyth, D.R., 1993. Plant retrotransposons, pp. 1–15 in Control of gene expression, edited by D.P.S. Verma. CRC Press, London.

    Google Scholar 

  • Suoniemi, A., K. Anamthawat-Jonsson, T. Arna & A.H. Schulman, 1996. Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol. Biol. 30: 1321–1329.

    PubMed  CAS  Article  Google Scholar 

  • Suoniemi, A., A. Narvanto & A.H. Schulman, 1996. The BARE-1 retrotransposon is transcribed in barley from a LTR promoter active in transient assays. Plant Mol. Biol. 31: 295–306.

    PubMed  CAS  Article  Google Scholar 

  • Thomas, B.T., W. Powell, R. Waugh, K.J. Chalmer, U.M. Barua, P. Jack, V. Lea, B.P. Forster, J.S. Swanston, P.R. Hanson & R.C.M. Lance, 1995. Detection of QTL for agronomic, yield, grain and disease characters in spring barley. Theor. Appl. Genet. 91: 1037–1047.

    CAS  Article  Google Scholar 

  • VanderWiel, P.L., D. Voytas & J.F. Wendel, 1993. Copia like retro-transposable element evolution in diploid and polyploid cotton (Gossypium L.). J. Mol. Evol. 36: 429–447.

    PubMed  CAS  Article  Google Scholar 

  • Vos, P., R. Rogers, M. Bleeker, M. Rejans, T. van de Lee, M. Hornes, A. Fritjer, J. Pot, J. Peleman, M. Kuiper & M. Zabueau, 1995. AFLP: a new concept for DNA fingerprinting. Nucl. Acid Res. 23: 4407–4414.

    CAS  Google Scholar 

  • Voytas, D.F. & F.M. Ausubel, 1988. A copia-like transposable element family in Arabidopsis thaliana. Nature (London) 336: 342–244.

    Article  Google Scholar 

  • Voytas, D.F., M.P. Cummings, A. Konieczny, F.M. Ausubel & S.R. Rodermel, 1992. Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89: 7124–7128.

    PubMed  CAS  Article  Google Scholar 

  • Voytas, D.F., 1996. Retroelements in genome organisation. Science 274: 737–738.

    PubMed  CAS  Article  Google Scholar 

  • Waugh, R., K. Mclean, A.J. Flavell, S.R. Pearce, A. Kumar, B.T. Thomas & W. Powell, 1997. Genetic distribution of BARE-1-like retroelements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253: 687–694.

    PubMed  CAS  Article  Google Scholar 

  • Wessler, S.R., T.E. Bureau & S.E. White, 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. 5: 814–821.

    CAS  Article  Google Scholar 

  • White, S.E., L. Hebara & S.R. Wessler, 1994. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl. Acad. Sci. USA 91: 11792–11796.

    PubMed  CAS  Article  Google Scholar 

  • Wright, D.A., N. Ke, J. Smalle, B.M. Haugr, H.M. Goodman & D.F. Voytas, 1996. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics 142: 569–578.

    PubMed  CAS  Google Scholar 

  • Yoshioka, Y., S. Matsumoto, S. Kojima, S. Ohshima, K. Okada & Y. Machida, 1993. Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNA. Proc. Acad. Natl. Sci. USA 90: 6562–6566.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, A., Pearce, S.R., McLean, K. et al. The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetica 100, 205 (1997). https://doi.org/10.1023/A:1018393931948

Download citation

  • DOI: https://doi.org/10.1023/A:1018393931948

  • Ty1-copia
  • retrotransposons
  • retroelements
  • plants
  • genomic organisation
  • evolution
  • molecular marker