Skip to main content

Temperature and resistance gene interactions in the expression of resistance to Blumeria Graminis f. sp. Tritici

Abstract

The influence of temperature on the resistance to powdery mildew, caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici Em. Marchal, was evaluated on six wheat cultivars/lines, Axminster/8* Chancellor (Cc) (Pm1), Chul/8*Cc (Pm3b), Yuma/8*Cc (Pm4a), VPM1 (Pm4b), Kavkaz (Pm8), and Chancellor, at two temperatures of 25EC and 15EC with two isolates of powdery mildew. Resistance, based on the components of latency period, infection type, colony number per unit leaf area, per cent infected leaf area, and AUDPC, was much less effective at 15EC than at 25EC for VPM1 and Yuma/8*Cc, but no resistance shift was observed for Kavkaz and Axminster/8*Cc, indicating the difference of temperature-sensitivity among Pm genes or among the interactions of individual host genes with corresponding powdery mildew pathogen genes.

This is a preview of subscription content, access via your institution.

References

  1. Akai, S., 1952. Relation of temperature to the invasion of the barley powdery mildew into host. Agriculture & Horticulture, Tokyo 27 (10): 1135.

    Google Scholar 

  2. Aust, Hans-Jürgen & Jürgen V. Hoyningen-Huene, 1986. Microclimate in relation to epidermic of powdery mildew. Annual Review of Phytopathology 24: 491–510.

    Google Scholar 

  3. Balass, M., Y. Cohen & M. Bar-Joseph, 1993. Temperature-dependent resistance to downy mildew in muskmelon: Structural responses. Physiological and Molecular Plant Pathology 43: 11–20.

    Article  Google Scholar 

  4. Bennett, F.G.A., 1984. Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programs. Plant Pathology 33: 279–300.

    Google Scholar 

  5. Bevan, J.R., 1993. Diversity and variation in expression of resistance to Erysiphe fischeri in Senecio vulgaris. Plant Pathology 42: 647–653.

    Google Scholar 

  6. Bowen, K.L., K.L. Everts & S. Leath, 1991. Reduction in yield of winter wheat in North Carolina due to powdery mildew and leaf rust. Phytopathology 81: 503–511.

    Google Scholar 

  7. Broers, L.H.M. & S.C. Wallenburg, 1989. Influence of post-infection temperature on three components of partial resistance in wheat to wheat leaf rust. Euphytica 44: 215–224.

    Article  Google Scholar 

  8. Browder, L.E., 1985. Parasite: host: environment specificity in the cereal rusts. Annual Review of Phytopathology 23: 201–222.

    Google Scholar 

  9. Dyck, P.L. & R. Johnson, 1983. Temperature sensitivity of genes for resistance in wheat to Puccinia recondita. Canadian Journal of Plant Pathology 5: 229–234.

    Article  Google Scholar 

  10. Flor, H.H., 1956. The complementary genetic systems in flax and flax rust. Advances in Genetics 8: 29–54.

    Article  Google Scholar 

  11. Ge, Y.-F., 1996. Effect of temperature on the expression of adult-plant resistance to powdery mildew in wheat (Triticum aestivumL.). Ph. D. thesis, The University of Georgia.

  12. Gousseau, H.D.M., Deverall B.J. & R.A. McIntosh, 1985. Temperaturesensitivity of the expression of resistance to Pucciniagraminis conferred by the Sr15, Sr9b, and Sr14 genes in wheat. Physiological Plant Pathology 27: 335–343.

    Google Scholar 

  13. Griffey, C.A., M.K. Das & E.L. Stromberg, 1993. Effectiveness of adultplant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Disease 77: 618–622.

    Article  Google Scholar 

  14. Islam, M.R., K.W. Shepherd & G.M.E. Mayo, 1989. Effect of genotype and temperature on the expression of L genes in flax conferring resistance to rust. Physiological and Molecular Plant Pathology 35: 141–150.

    Article  Google Scholar 

  15. Jin, S., Y. Song, W. Deng, M.P. Gordon & E.W. Nester, 1993. The regulatory VirA protein of Agrobactorium tumefaciens does not function at elevated temperatures. Journal of Bacteriology 175 (21): 6830–6835.

    PubMed  CAS  Google Scholar 

  16. Jones, I.T. & J.D. Hayes, 1971. The effect of sowing date on adult plant resistance to Erysiphe graminis f. sp. avenae in oats. Annal of Applied Biology 68:31–39.

    Google Scholar 

  17. Judelson, H.S. & R.W. Michelmore, 1992. Temperature and genotype interactions in the expression of host resistance in lettuce downy mildew. Physiological andMolecular Plant Pathology 40: 233–245.

    Article  Google Scholar 

  18. Knott, D.R., 1981. The effects of genotype and temperature on the resistance to Puccinia graminis tritici controlled by the gene Sr6in Triticum aestivum. Canadian Journal of Genetics and Cytology 23: 181–190.

    Google Scholar 

  19. Leath, S. & M. Heun, 1990. Identification of powdery mildew resistance genes in cultivars of soft red winter wheat. Plant Disease 74: 747–752.

    Google Scholar 

  20. Lebedeva, T.V., 1986. Genetic analysis of resistance to powdery mildew in forms of bread wheat (Triticum aestivum L.).Genetica, USSR, 22: 2303–2309.

    Google Scholar 

  21. Luig, N.H. & S. Rajaram, 1972. The effect of temperature and genetic background on host gene expression and interaction to Puccinia graminis tritici. Phytopathology 62: 1171–1174.

    Article  Google Scholar 

  22. Mains, E.B. & S.M. Dietz, 1930. Physiologic forms of barleymildew Erysiphe graminis hordei Marchal. Phytopathology 20: 229–239.

    Google Scholar 

  23. McIntosh, R.A., G.E. Hart, K.M. Devos & M.D. Gale, 1995. Catalogue of gene symbols for wheat: 1995 supplement. Wheat Information Service 81: 22–49.

    Google Scholar 

  24. Pretorius, Z.A., F.J. Kloppers & S.C. Drijepondt, 1994. Effects of inoculum density and temperature on three components of leaf rust resistance controlled by Lr34 in wheat. Euphytica 74: 91–96.

    Article  Google Scholar 

  25. Roelfs, A.P., 1988. Genetic control of phenotypes in wheat stem rust. Annual Review of Phytopathology 26: 351–367.

    Google Scholar 

  26. Royer, M.H., R.R. Nelson, D.R. MacKenzie & D.A. Diehle, 1984. Partial resistance of near-isogenic wheat lines compatible with Erysiphe graminis f. sp. tritici. Phytopathology 74: 1001–1006.

    Article  Google Scholar 

  27. Shaner, G. & R.E. Finney, 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67: 1051–1056.

    CAS  Article  Google Scholar 

  28. Shaner, G., 1973. Reduced infectability and inoculum production as factors of slow mildewing in Knox wheat. Phytopathology 63: 1307–1311.

    Article  Google Scholar 

  29. Sharp, E.L., 1965. Prepenetration and postpenetration environment and development of Puccinia striiformis on wheat. Phytopathology 55: 198–203.

    Google Scholar 

  30. Ward, S.V. & J.G. Manners, 1974. Environmental effects on the quantity and viability of conidia produced by Erysiphe graminis. Transactions of the British Mycological Society 62: 119–128.

    Article  Google Scholar 

  31. Zadoks, J.C., T.T. Chang & C.F. Konzak, 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415–421.

    Google Scholar 

  32. Zeller, F.J., J. Lutz, E. Reimlein, E. Limpert & J. Koenig, 1993. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). 2. French cultivars. Agronomie 13: 201–207.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ge, Yf., Johnson, W., Roberts, J.J. et al. Temperature and resistance gene interactions in the expression of resistance to Blumeria Graminis f. sp. Tritici . Euphytica 99, 103–109 (1998). https://doi.org/10.1023/A:1018392725474

Download citation

  • temperature – resistance gene interactions
  • powdery mildew
  • Blumeria graminis tritici
  • Triticum aestivum L.