Water, Air, and Soil Pollution

, Volume 100, Issue 3–4, pp 297–310 | Cite as

Lead in Three Peat Bog Profiles, Jura Mountains, Switzerland: Enrichment Factors, Isotopic Composition, and Chronology of Atmospheric Deposition

  • W. Shotyk
  • A.K. Cheburkin
  • P.G. Appleby
  • A. Fankhauser
  • J.D. Kramers


One metre cores were taken from three peat bogs in the Jura Mountains of Switzerland: Etang de la Gruère (EGr), La Tourbière des Genevez (TGe), and Praz Rodet (PRd). Dried peat samples were analyzed for lead (Pb) using the EMMA XRF and scandium (Sc) using INAA. Enrichment factors (EF) were calculated by normalizing to the background Pb/Sc ratio at EGr. Age dates were obtained using 210Pb (CRS Model) and confirmed using pollen chronostratigraphic markers in replicate cores. The isotopic composition of Pb in selected peat samples from EGr and TGe was determined using TIMS.

Two pronounced peaks in Pb EF occur in the uppermost sections of all three bogs: the upper one corresponds to the late 1960's to late 1970's and the lower one to approximately 1900 to 1920. At EGr, sample 2f5 (11 cm, 86 µg/g Pb, EF = 91, and dated at A.D. 1967 ± 2) has an isotopic composition similar to that of leaded gasoline used in Berne in the 1970's. For comparison, the older peak at EGr (sample 2fl 1 at 29 cm, 84 µg/g Pb, EF = 79 and dated at A.D. 1905 ± 6) is significantly different. In contrast to these two samples, the isotopic composition of sample 2fl 5 (41 cm, 30 µg/g Pb, EF = 13 and pre-dating ca. A.D. 1800) approaches the present day "average terrestrial lead" and is likely to be predominately lithogenic. Therefore, the isotopic data show that the Pb introduced to the bog from leaded gasoline has not penetrated to this depth in the profile. A simple mass balance using the measured Pb concentrations and the isotopic compositions shows that vertical migration of gasoline Pb cannot explain the deeper, older peak in Pb EF. A more likely explanation is that the older peak reflects the rates of atmospheric Pb deposition during the first two decades of the 20th century. Taken together, the Pb concentrations, age dates, and isotopic data suggest that these peat profiles have preserved the record of changing rates of atmospheric Pb deposition. In addition, the results indicate that the isotopic composition of Pb deposited on the surface of the bogs gradually shifted away from lithogenic ratios as long ago as the middle of the 19th century, a change which clearly pre-dates the introduction of leaded gasoline.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleby, P.G. and Oldfield, F.: 1978, Catena 5, 1–8.Google Scholar
  2. Appleby, P.G. and Oldfield, F.: 1992, In: Uranium Series Disequilibrium (M. Ivanovich and R.S. Harmon, eds.), pp. 731–738. Oxford Univesity Press.Google Scholar
  3. Appleby, P.G., Shotyk, W., and Fankhauser, A.: 1997, Water Air Soil Poll. (this Issue).Google Scholar
  4. Bacon, J.R., Jones, K.C., McGrath, S.P. and Johnston, A.E.: 1996, Environ. Sci. Technol. 30, 2511–2518.Google Scholar
  5. Ben Othman, D., White, W.M., and Patchett, I.: 1989, Earth Planet Sci. Lett., 94, 1–21Google Scholar
  6. Cheburkin, A.K. and Shotyk, W.: 1996, Fresenius J. Anal. Chem. 354, 688–691.Google Scholar
  7. Cheburkin, A.K., Frei, R. and Shotyk, W.: 1997, Chem. Geol. 135, 75–87.Google Scholar
  8. Chow, T.J. and Earl, J.L.: 1972, Science 176, 510–511.Google Scholar
  9. Coleman, D.O.: 1985, In: Historical Monitoring. Monitoring and Assessment Research Centre, MARC Report No. 31, pp. 155–173. University of London.Google Scholar
  10. Dau, J.H.C.: 1823, Neues Handbuch über den Torf. J.C. Hinrichsche Buchhandlung, Leipzig.Google Scholar
  11. Ernst, W.H.O., Mathys, W., Salaske, J, and Janiesch, P.: 1974, Landesamt f. Naturkunde, Münster 2, 3–31.Google Scholar
  12. Fankhauser, A.: 1995, Diploma thesis, Systematic Geobotanical Institute, University of Berne.Google Scholar
  13. Glooschenko, W.A.: 1986, In: Toxic Metals in the Atmosphere (J.O. Nriagu and D.I. Davidson, eds.), pp. 508–533. John Wiley and Sons, New York.Google Scholar
  14. Glooschenko, W.A. Holloway, L. and Arafat, N.: 1986, Aquat. Bot. 25, 179–190Google Scholar
  15. Görres, M. and Bludau, W.: 1992, Telma, 22, 123–144.Google Scholar
  16. Görres, M. and Frenzel, B.: 1993, Naturwissen. 80, 333–335.Google Scholar
  17. Grousset, F.E., Quétel, C.R., Thomas, B., Buat-Ménard, P., Donard, O.F.X., and Bucher, A.: 1994, Environ. Sci. Technol. 28, 1605–1608.Google Scholar
  18. Joray, M.: 1942, Matériaux pour le levé géobotanique de la Suisse, Fascicule 25. Commission phytogéographiqe de la Société helvétique des Sciences naturelles. Hans Huber, Berne, 117pp.Google Scholar
  19. Lee, J.A. and Tallis, J.H.: 1973, Nature 245, 216–218.Google Scholar
  20. Livett, E.A.: 1988, In: Advances in Ecological Research Vol. 18. (M. Begon, A.H. Fitter, E.D. Ford, and A. Macfadyen, eds.), pp. 65–175. Academic Press, New York.Google Scholar
  21. Mitchell, E.A.D.: 1995, Diploma thesis, Botanical Institute, University of Neuchâtel.Google Scholar
  22. Schütz, L.: 1989, In: Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport (M. Leinen and M. Samthein, eds.), pp. 359–383. NATO ASI Series C: Mathematical and Physical Sciences, Volume 282. Kluwer Academic Publishers, Dordrecht.Google Scholar
  23. Shotyk, W.: 1988, Earth-Sci. Rev. 25, 95–176.Google Scholar
  24. Shotyk, W.: 1992, In: Weathering, Soils, and Paleosols (I.P. Martini and W. Chesworth, eds.), pp. 203–224. Elsevier, Amsterdam.Google Scholar
  25. Shotyk, W.: 1995, Habilitation, Geological Institute, University of Berne.Google Scholar
  26. Shotyk, W.: 1996a, Water, Air, Soil Poll. 90, 375–405.Google Scholar
  27. Shotyk, W.: 1996b, Env. Reviews, 4, 149–183.Google Scholar
  28. Shotyk, W., and Steinmann, P.: 1994, Chem. Geol. 116, 137–146.Google Scholar
  29. Shotyk, W., Cheburkin, A.K., Appleby, P.G., Fankhauser, A., and Kramers, J.D.: 1996, Earth Planet. Sci. Lett. 145, E1-E7.Google Scholar
  30. Stacey, J.S. and Kramers, J.D.: 1975, Earth Planet. Sci. Lett. 26, 207–221.Google Scholar
  31. Steinmann, P.: 1995, Ph.D. thesis, Geological Institute, University of Berne.Google Scholar
  32. Steinmann, P. and Shotyk, W.: 1997a, Geochim. Cosmochim. Acta 61, 1143–1163.Google Scholar
  33. Steinmann, P. and Shotyk, W.: 1997b, Chem. Geol. (in press).Google Scholar
  34. Urban, N.R., Eisenreich, S.J., Grigal, D.F., and Schurr, K.T.: 1990, Geochim. Cosmochim. Acta, 54, 3329–3346.Google Scholar
  35. van Geel, B., Bregman, R., van der Molen, P.C., Dupont, L.M. and van Driel-Murray, C.: 1989, Acta Bot. Neerl. 38, 476–476.Google Scholar
  36. Wardenaar, E.C.P.: 1987, Can. J. Bot. 65, 1772–1773.Google Scholar
  37. Wedepohl, K.H.: 1995, Geochim. Cosmochim. Acta 59, 1217–1232.Google Scholar
  38. Weiss, D., Shotyk, W., Cheburkin, A.K., and Gloor, M.: 1997, Water Air Soil Poll. (this Issue).Google Scholar
  39. Welten, M.: 1964, Mitt. Natur. Gesell. Bern 21, 67–73.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • W. Shotyk
    • 1
  • A.K. Cheburkin
    • 2
  • P.G. Appleby
    • 3
  • A. Fankhauser
    • 4
  • J.D. Kramers
    • 5
  1. 1.Geological InstituteUniversity of BerneBerneSwitzerland
  2. 2.Institute of Geological SciencesUkrainian Academy of SciencesKiev 54Ukraine
  3. 3.Environmental Radiometric Research Centre, Department of Applied Mathematics and Theoretical PhysicsUniversity of LiverpoolLiverpoolEngland
  4. 4.Systematic Geobotanical InstituteUniversity of BerneBerneSwitzerland
  5. 5.Isotope Geology Group, Mineralogy-Petrology InstituteUniversity of BerneBernSwitzerland

Personalised recommendations