Skip to main content
Log in

Species richness of vascular plantsin the subarctic landscape of northern Finland:modelling relationships to the environment

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

This paper presents models based on empirical data which can be used to predict the patterns of species richness of vascular plants at the poorly explored mesoscale. Using generalized linear modelling, multiple regression models of species richness in the Kevo Nature Reserve, North Finland, are built with a training set of 257 grid squares and 33 environmental variables. We validated the accuracy of the derived models with an independent test set of 100 grid squares. Two different modelling approaches are used: one where species richness is treated straightforwardly as the response variable, and another where it is tentatively stratified into two groups according to taxon types, i.e. alpine taxa versus wide-spread and silvine (forest) taxa. However, the latter approach only marginally improved the accuracy of the predictions of total number of species. Linear altitudinal variables were among the best predictors of vascular plant richness at the mesoscale. As variables involving altitude are crude surrogates for energy-related factors, the results support the available energy hypothesis and advocate its significance in richness-environment relationships. Other important predictors of species richness included length of rivers and brooks, abundance of cliff walls, occurrences of steep-sided gorges and valleys, and relative abundance of gabbro in bedrock. However, the accuracy of the predictions in the derived models is relatively modest. This points towards the necessity of field work as a final guarantee to identify local hotspots of vascular plant species in a subarctic landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashton, P.S. (1992) Species richness in plant communities. In Conservation Biology. The Theory and Practice of Nature Conservation Preservation and Management (P.L. Fieldler, and S.K. Jain, eds) pp. 3–22. London: Chapman and Hall.

    Google Scholar 

  • Austin, M.P., Cunningham, R.B. and Fleming, P.M. (1984) New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio 55, 11–27.

    Article  Google Scholar 

  • Austin, M.P., Nicholl, A.O. and Margules, C.R. (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecol. Monogr. 60, 161–177.

    Article  Google Scholar 

  • Austin, M.P., Pausas, J.G. and Nicholls, A.O. (1996) Patterns of tree species richness in relation to environment in south-eastern New South Wales, Australia. Aust. J. Ecol. (in press).

  • Begon, M., Harper, J.L. and Townsend, C.R. (1996) Ecology: Individuals, Populations and Communities. Oxford: Blackwell Science.

    Google Scholar 

  • Birks, H.J.B. (1993) Is the hypothesis of survival on glacial nunataks necessary to explain the present-day distributions of Norwegian mountain plants? Phytocoenologia 23, 399–426.

    Google Scholar 

  • Birks, H.J.B. (1996) Statistical approaches to interpreting diversity patterns in the Norwegian mountain flora. Ecography 19, 332–40.

    Article  Google Scholar 

  • Crawley, M.J. (1993) GLIM for Ecologists. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Currie, D.J. (1991) Energy and large-scale patterns of animal-and plant-species richness. Am. Nat. 137, 27–49.

    Article  Google Scholar 

  • Currie, D.J. and Paquin, V. (1987) Large-scale biogeographical patterns of species richness of trees. Nature 329, 326–7.

    Article  Google Scholar 

  • Fiedler, P.L. and Jain, S.K. (1992) Conservation Biology. The Theory and Practice of Nature Conservation, Preservation, and Management. New York: Chapman & Hall.

    Google Scholar 

  • Gjaerevoll, O. (1956) The plant communities of the Scandinavian alpine snowbeds. Kungl. Norske Vidensk. Selsk. Skr. 1956(1), 1–405.

    Google Scholar 

  • Gjaerevoll, O. (1990) Maps of Distribution of Norwegian Vascular Plants II. Alpine Plants. Trondheim: Tapir.

    Google Scholar 

  • Haapasaari, M. (1988) The oligotrophic heath vegetation of northern Fennoscandia and its zonation. Acta Bot. Fennica 135, 1–219.

    Google Scholar 

  • Haila, Y. and Kouki, J. (1994) The phenomenon of biodiversity in conservation biology. Ann. Zool. Fennici 31, 5–18.

    Google Scholar 

  • Hämet-Ahti, L., Suominen, J., Ulvinen, T., Uotila, P. and Vuokko, S. (1986) Retkeilykasvio. Helsinki: Suomen Luonnonsuojelun Tuki Oy.

    Google Scholar 

  • Heikkinen, R.K. (1996) Predicting patterns of vascular plant species richness with composite variables: a meso-scale study in Finnish Lapland. Vegetatio 126, 151–65.

    Article  Google Scholar 

  • Heikkinen, R.K. and Kalliola, R.J. (1989) Vegetation types and map of the Kevo Nature Reserve, northernmost Finland. Kevo Notes 8, 1–39.

    Google Scholar 

  • Heikkinen, R.K. and Kalliola, R.J. (1990) The vascular plants of the Kevo Nature Reserve (Finland); an ecological-environmental approach. Kevo Notes 9, 1–56.

    Google Scholar 

  • Heikinheimo, O. and Raatikainen, M. (1981) Ruutukoordinaattien ja paikannimien käyttö Suomessa. (Summary: Grid references and names of localities in the recording of biological finds in Finland). Notulae Entomologicae 61, 133–54.

    Google Scholar 

  • Heikkinen, R.K., Birks, H.J.B. and Kalliola, R.J. (1997) A numerical analysis of the mesoscale distribution patterns of vascular plants in the subarctic Kevo Nature Reserve, northern Finland. J. Biogeogr. (in press).

  • Hultén, E. and Fries, M. (1986) Atlas of North European Vascular Plants. North of the Tropic of Cancer. III. Commentary to the Maps. Total Index. Königstein: Koeltz Scientific Books.

    Google Scholar 

  • Huovila, S. and Tuominen, A. (1992) Some features of ground inversions in Finnish Lapland. In BOREAS. North Wind-Pohjatuuli. Hetta 10.–13.2.1992. An International Expert's Meeting on Wind Power in Icing Conditions (B. Tammelin, K. Säntti, E. Peltola and H. Neuvonen eds) pp. 144–52. Helsinki: Finnish Meteorological Institute.

    Google Scholar 

  • Kallio, P. and Lehtonen, J. (1975) On the ecocatastrophe of birch forests caused by Oporinia autumnata (Bkh.) and the problem of reforestation. In Fennoscandian Tundra Ecosystems. Part 2 (F.E. Wielgolaski, ed.) pp. 174–80. Ecological Studies, vol. 17. Berlin: Springer Verlag.

    Google Scholar 

  • Kallio, P., Laine, U. and Mäkinen, Y. (1969) Vascular flora of Inari Lapland. 1. Introduction and Lycopodiaceae-Polypodiaceae. Rep. Kevo Subarctic Res. Station 5, 1–108.

    Google Scholar 

  • Kuusipalo, J. (1984) Diversity pattern of the forest understorey vegetation in relation to some site characteristics. Silva Fennica 18, 121–31.

    Google Scholar 

  • Lee, R. (1963) Evaluation of solar beam irradation as a climatic parameter of mountain watersheds. Colo. State Univ. Hydrol. Paper 2, 1–50.

    CAS  Google Scholar 

  • Levin, S.A. (1992) The problem of pattern and scale in ecology. Ecology 73, 1943–67.

    Article  Google Scholar 

  • Magurran, A.E. (1988) Ecological Diversity and its Measurement. London: Chapman and Hall.

    Google Scholar 

  • Mäkinen, Y. and Kallio, P. (1979) Vascular plants of Inari Lapland, Finland. Kevo Notes 4, 1–47.

    Google Scholar 

  • Mansikkaniemi, H. and Laitinen, T. (1990) Pattern of local wind changes in a fell region, northern Finland. Rep. Kevo Subarctic Res. Station 21, 11–20.

    Google Scholar 

  • Margules, C.R. and Austin, M.P. (1991) Nature Conservation: Cost Effective Biological Surveys and Data Analysis. Australia: CSIRO.

    Google Scholar 

  • Margules, C. and Usher, M.B. (1981) Criteria used in assessing wildlife conservation potential: a review. Biol. Con. 21, 79–109.

    Article  Google Scholar 

  • Margules, C.R., Nicholls, A.O. and Austin, M.P. (1987) Diversity of Eucalyptus species predicted by a multi-variable environmental gradient. Oecologia 71, 229–32.

    Article  Google Scholar 

  • McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models. London: Chapman & Hall.

    Google Scholar 

  • Millar, C.E., Turk, L.M. and Foth, H.D. (1958) Fundamentals of Soil Science. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Miller, R.I. (1986) Predicting rare plant distribution patterns in the southern Appalachians of the south-eastern U.S.A. J. Biogeogr. 13, 293–311.

    Article  Google Scholar 

  • Miller, R.I. (1994) Mapping the Diversity of Nature. London: Chapman & Hall.

    Google Scholar 

  • Minchin, P.R. (1989) Montane vegetation of the Mt. Field massif, Tasmania: a test of some hypothesis about properties of community patterns. Vegetatio 83, 97–110.

    Article  Google Scholar 

  • Myers, N. (1990) The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10, 243–56.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, A.O. (1989) How to make biological surveys go further with generalised linear models. Biol. Cons. 50, 51–75.

    Article  Google Scholar 

  • Nicholls, A.O. (1991a) Examples of the use of generalised linear models in analysis of survey data for conservation evaluation. In Nature Conservation: Cost Effective Biological Surveys and Data Analysis (C.R. Margules and M.P. Austin, eds) pp. 54–63. Australia: CSIRO.

    Google Scholar 

  • Nicholls, A.O. (1991b) An introduction to statistical modelling using GLIM. In Nature Conservation: Cost Effective Biological Surveys and Data Analysis (C.R. Margules and M.P. Austin, eds) pp. 191–201. Australia: CSIRO.

    Google Scholar 

  • Nilsson, I.N. and Nilsson, S.G. (1985) Experimental estimates of census efficiency and pseudoturnover on islands: error trend and between-observer variation when recording vascular plants. J. Ecol. 73, 65–70.

    Article  Google Scholar 

  • Nilsson, C., Grelsson, G., Johansson, M. and Sperens, U. (1988) Can rarity and diversity be predicted in vegetation along river banks? Biol. Cons. 44, 201–12.

    Article  Google Scholar 

  • Noss, R.F. (1992) Issues of scale in conservation biology. Cons. Biol. (P.L. Fieldler and S.K. Jain, eds) pp. 239–50. New York: Chapman & Hall.

    Google Scholar 

  • Økland, B., Bakke, A., Hågvar, S. and Kvamme, T. (1996) What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodiv. Conserv. 5, 75–100.

    Article  Google Scholar 

  • Oksanen, L., Moen, J. and Helle, T. (1995) Timberline patterns in northernmost Fennoscandia. Acta Bot. Fennica 153, 93–105.

    Google Scholar 

  • Owen, J.G. (1988) On productivity as a predictor of rodent and carnivore diversity. Ecology 69, 1161–65.

    Article  Google Scholar 

  • Pausas, J.G. (1994) Species richness patterns in the understorey of Pyrenean Pinus sylvestris forest. J. Veg. Sci. 5, 517–24.

    Article  Google Scholar 

  • Payne, C.D. (1986) The GLIM System Release 3.77 Manual. Oxford: Numerical Algorithms Group, Royal Statistical Society.

    Google Scholar 

  • Philippi, T.E. (1993) Multiple regression: Herbivory. In Design and Analysis of Ecological Experiments (S.M. Scheiner and J. Gurevitch, eds) pp. 183–210. New York: Chapman & Hall.

    Google Scholar 

  • Prendergast, J.R., Quinn, R.M., Lawton, J.H., Eversham, B.C. and Gibbons, D.W. (1993a) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365, 335–7.

    Article  Google Scholar 

  • Prendergast, J.R., Wood, S.N., Lawton, J.H. and Evershem, B.C. (1993b) Correcting for variation in recording effort in analyses of diversity hotspots. Biodiv. Lett. 1, 39–53.

    Article  Google Scholar 

  • Richerson, P.J. and Lum, K.-L. (1980) Patterns of plant species diversity in California: relation to weather and topography. Am. Nat. 116, 504–36.

    Article  Google Scholar 

  • Rintanen, T. (1970) On the vegetation and ecology of frost ground sites in Eastern Finnish Lapland. Ann. Bot. Fennici 7, 1–24.

    Google Scholar 

  • SAS Institute Inc. (1985) SAS/STAT Guide for Personal Computers, Version 6 Edition. Cary: NC. SAS Institute Inc.

    Google Scholar 

  • Schluter, D. and Ricklefs, R.E. (1993) Species diversity. An introduction to the problem. In Species Diversity in Ecological Communities. Historical and Geographical Perspectives (R.E. Ricklefs and D. Schluter, eds) pp. 1–10. Chicago: University of Chicago Press.

    Google Scholar 

  • Thompson, D.B.A. and Brown, A. (1992) Biodiversity in montane Britain: habitat variation, vegetation diversity and some objectives for conservation. Biodiv. Conserv. 1, 179–208.

    Article  Google Scholar 

  • Tikkanen, P. (1992) Lapin ilmasto-olot ja topografian vaikutus Kevon mikroilmastoon kesällä 1982. MSc Thesis (In Finnish). University of Turku, Finland: Department of Geography.

  • Tilman, D. and Pacala, S. (1993) The maintenance of species richness in plant communities. Species Diversity in Ecological Communities (R.E. Ricklefs and D. Schluter, eds) pp. 13–25. Chicago: University of Chicago Press.

    Google Scholar 

  • Tonteri, T. (1994) Species richness of boreal understorey forest vegetation in relation to site type and successional factors. Ann. Zool. Fennici 31, 53–60.

    Google Scholar 

  • Tuhkanen, S. (1984) A circumboreal system of climatic-phytogeographical regions. Acta Bot. Fennica 127, 1–50.

    Google Scholar 

  • Walker, M.D. (1995) Patterns and causes of arctic plant community diversity. Arctic and Alpine Biodiversity (F.S. Chapin and C. Körner, eds) pp. 3–20. Berlin: Springer-Verlag.

    Google Scholar 

  • White, P.S. and Miller, R.I. (1988) Topographic models of vascular plant richness in the southern Appalachian high peaks. J. Ecol. 76, 192–9.

    Article  Google Scholar 

  • Wiens, J.A. (1989) Spatial scaling in ecology. Func. Ecol. 3, 385–97.

    Article  Google Scholar 

  • Wiens, J.A., Addicott, J.F., Case, T.J. and Diamond, J. (1986) Overview: the importance of spatial and temporal scale in ecological investigations. In Community Ecology (J. Diamond and T.J. Case, eds) pp. 145–53. New York: Harper & Row.

    Google Scholar 

  • Wright, D.H., Currie, D.J. and Maurer, B.A. (1993) Energy supply and patterns of species richness on local and regional scales. In Species Diversity in Ecological Communities. Historical and Geographical Perspectives (R.E. Ricklefs and D. Schluter, eds) pp. 66–74. Chicago: The University of Chicago Press.

    Google Scholar 

  • Yee, T.W. and Mitchell, N.D. (1991) Generalized additive models in plant ecology. J. Veg. Sci. 2, 587–602.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HEIKKINEN, R.K., NEUVONEN, S. Species richness of vascular plantsin the subarctic landscape of northern Finland:modelling relationships to the environment. Biodiversity and Conservation 6, 1181–1201 (1997). https://doi.org/10.1023/A:1018356823171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018356823171

Navigation