Skip to main content
Log in

Preparation and properties of an Fe(III)-complex with an Amadori compound derived from L-tyrosine

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

The complexation of Fe(III) with an Amadori compound derived from L-tyrosine was studied. The isolated complex was characterized by elemental analyses, Fourier transform infrared (FTIR) and 13C nuclear magnetic resonance (NMR) spectroscopy. Analyses indicate that the ligand is coordinated through the amino and carboxylate groups of the tyrosine part of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando W, Morooka Y, eds. 1988 The Role of Oxygen in Chemistry and Biochemistry. Amsterdam: Elsevier.

    Google Scholar 

  • Bauman RP. 1962 Absorption Spectroscopy. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Brownlee M. 1995 Advanced protein glycosylation in diabetes and aging. {tiAnn Rev Med} 46, 223–234.

    Google Scholar 

  • Burger K, Zay I, Takásci-Nagy G. 1983 A novel poly-nuclear iron(III) mixed ligand complex for use in parenteral iron therapy. Inorg Chim Acta 80, 231–235.

    Google Scholar 

  • Charley PJ, Sarkar B, Stitt CF, Saltman P. 1963 Chelation of iron by sugars. Biochim Biophys Acta 69, 313–321.

    Google Scholar 

  • Chen J, Pill T, Beck W. 1989 Metallkomplexe mit bio-logisch wichtigen Liganden, L[1] Palladium (II)-, Platin(II)-und Kupfer(II)-Komplexe von α-Amino-säure-N-Glycosiden und von Fructose-Aminosäuren (Amadori Verbindungen). Z Naturforsch 44b, 459–464.

    Google Scholar 

  • Cheng RZ, Kawakishi S. 1993 Selective degradation of histidine residue mediated by copper(II)-catalyzed autoxidation of glycated peptide (Amadori compound). J Agric Food Chem 41, 361–365.

    Google Scholar 

  • Cheng RZ, Tsunehiro J, Ushida K, Kawakishi S. 1991 Oxidative damage of glycated protein in the presence of transition metal ion. Agric Biol Chem 55, 1993–1998.

    Google Scholar 

  • Covington AK, Paabo M, Robinson RA, Bates RG. 1968 Use of glass electrode in deuterium oxide and the relation between the standardized pD(paD) scale and the operational pH in heavy water. Anal Chem 40, 700–706.

    Google Scholar 

  • Dabrowiak JC, Greenaway FT, Santillo FS, Crooke ST. 1979 The iron complexes of bleomycin and tallysomycin. Biochem Biophys Res Comm 91, 721–729.

    Google Scholar 

  • Gyurcsik B, Gajda T, Nagy L, et al. 1993 Proton, copper(II) and nickel(II) complexes of some Amadori rearrangement products of D-glucose and amino acids. Inorg Chim Acta 214, 57–66 (and the references therein).

    Google Scholar 

  • Koegel RJ, Greenstein JP, Winitz M, Birnbaum SM, McCallum RA. 1955 Studies on diastereoisomeric α-amino acids and corresponding α-hydroxy acids. V. Infrared spectra. J Am Chem Soc 77, 5708–5720.

    Google Scholar 

  • Ledl F, Schleicher E. 1990 New aspects of the Maillard reaction in foods and in the human body. Angew Chem Int Ed Engl 29, 565–594 (and the references therein).

    Google Scholar 

  • Nagy L, Burger K, Kürti J, et al. 1986 Iron(III) complexes of sugar-type ligands. Inorg Chim Acta 124, 55–59.

    Google Scholar 

  • Nagy L, Ohtaki H, Yanaguchi T, Nonura M. 1989 EXAFS study of iron (III) complexes of sugar-type ligands. Inorg Chim Acta 159, 201–207.

    Google Scholar 

  • Nakamoto K. 1978 Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Namiki M, Kato H, eds. 1986 Amino-Carbonyl Reaction in Food and Biological System. Japan: Elsevier-Kodansha.

    Google Scholar 

  • Puri RN, Asplund RO. 1981 Preparation and properties of iron(III)-L-amino acid nitrates. Inorg Chim Acta 54, 187–190.

    Google Scholar 

  • Puri RN, Asplund RO. 1982 Preparation and properties of tri-µ3-oxotriaquotris(L-amino acid) tris (dihydrogen-phosphito) triiron(III) nitrates: Synthetic probes for the ferritin iron core. Inorg Chim Acta 66, 49–56.

    Google Scholar 

  • Ricart W, Fernández-Real JM, del Pozo M, Mascaró J, García-Bragado F. 1993 The cause of elevated glycosylated haemoglobin concentration in AIDS. AIDS 7, 126–127.

    Google Scholar 

  • Röper H, Röper S, Heyns K, Meyer B. 1983 N.M.R. Spectroscopy of N-(1-deoxy-D-fructos-1-yl)-L-amino acids ("fructose-amino acids"). Carbohydr Res 116, 183–195.

    Google Scholar 

  • Sakurai T, Sugioka K, Nakano M. 1990 O2 generation and lipid peroxidation during the oxidation of a glycated polypeptide, glycated polylysine in the presence of iron-ADP. Biochim Biophys Acta 1043, 27–33.

    Google Scholar 

  • Saltman P. 1965 The role of chelation in iron metabolism. J Chem Educ 42, 682–687.

    Google Scholar 

  • Tonković M. 1994 New approach to the complexation of iron(III) with fructose. Carbohydr Res 254, 277–280.

    Google Scholar 

  • Tonković M, Musić S, Hadžija O, Nagy-Czakó I, Vertes A. 1982 Mössbauer study of iron-sugar complexes. Acta Chim Acad Sci Hung 110, 197–202.

    Google Scholar 

  • Tonković M, Hadžija O, Nagy-Czakó I. 1983 Preparation and properties of Fe(III)-sugar complexes. Inorg Chim Acta 80, 251–254.

    Google Scholar 

  • Tonković M, Hadžija O, Ladešić B, Klaić B, Musić S. 1989 Preparation and properties of the complex of Fe(III) with peptidoglycan monomer. Inorg Chim Acta 161, 81–85.

    Google Scholar 

  • Tonković M, Horvat Š, Horvat J, Musić S, Hadžija O. 1990 The complexes of iron(III) with D-glucopyranosyl esters of glycine. Polyhedron 9, 2895–2899.

    Google Scholar 

  • Williams DH, Fleming I. 1973 Spectroscopic Methods in Organic Chemistry. London: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonkovicc, M., Jakas, A. & Horvat, S. Preparation and properties of an Fe(III)-complex with an Amadori compound derived from L-tyrosine. Biometals 10, 55–59 (1997). https://doi.org/10.1023/A:1018318820812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018318820812

Navigation