Skip to main content
Log in

Constitutive heterochromatin and transposable elements in Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Several families of transposable elements (TEs), most of them belonging to the retrotransposon catagory, are particularly enriched in Drosophila melanogaster constitutive heterochromatin. The enrichment of TE-homologous sequences into heterochromatin is not a peculiar feature of the Drosophila genome, but appears to be widespread among higher eukaryotes. The constitutive heterochromatin of D. melanogaster contains several genetically active domains; this raises the possibility that TE-homologous sequences inserted into functional heterochromatin compartments may be expressed. In this review, I present available data on the genetic and molecular organization of D. melanogaster constitutive heterochromatin and its relationship with transposable elements. The implications of these findings on the possible impact of heterochromatic TEs on the function and evolution of the host genome are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Appels, R. & W.J. Peacock, 1978. The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference to Drosophila. Int. Rev. Cytol. 8: 69–126 (Suppl.).

    CAS  Google Scholar 

  • Berghella L. & P. Dimitri, 1996. The heterochromatic rolled gene of Drosophila melanogaster is extensively polytenized and tran-scriptionally active in the salivary gland chromocenter. Genetics 144: 117–125.

    PubMed  CAS  Google Scholar 

  • Biggs, H.W., H.K. Zavitz, B. Dikinson, A. Van der Straten, D. Brun-ner, E. Hafen & L.S. Zipursky, 1994. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduc-tion pathway. EMBO J. 13: 1628–1635.

    PubMed  CAS  Google Scholar 

  • Bonaccorsi, S. & A. Lohe, 1991. Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between the satellite sequences and fertility factors. Genetics 129: 177–189.

    PubMed  CAS  Google Scholar 

  • Brutlag, D.L. & M. Carlson, 1978. One of the copia genes is adjacent to satellite DNA in Drosophila melanogaster. Cell 15: 733–742.

    Article  PubMed  Google Scholar 

  • Bucheton, A., C. Vaury, M.-C. Chaboissier, P. Abad A. Pelisson & M. Simonelig, 1992. I elements and the Drosophila genome. Genetica 86: 175–190.

    Article  PubMed  CAS  Google Scholar 

  • Busseau, I., M.C. Chaboissier, A. Pelisson & A. Bucheton, 1994. I factors in Drosophila melanogaster: transposition under control. Genetica 93: 101–116.

    Article  PubMed  CAS  Google Scholar 

  • Cabot, E.L., P. Doshi, M-L. Wu & C-I. Wu, 1993. Population genet-ics of tandem repeats in centromeric heterochromatin: unequal crossing over and chromosomal divergence at the Responder locus of Drosophila melanogaster. Genetics 135: 477–487.

    PubMed  CAS  Google Scholar 

  • Caizzi, R., C. Caggese & S. Pimpinelli, 1993. Bari-1,anew transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. Genetics 133: 335–345.

    PubMed  CAS  Google Scholar 

  • Carmena M. & C. Gonzales, 1995. Transposable elements map in a conserved pattern distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma 103: 676–684.

    PubMed  CAS  Google Scholar 

  • Carlson, M. & D. Brutlag, 1978. One of the copia genes is adjacent to satellite DNA in Drosophila melanogaster. Cell 15: 733–742.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B., P. Jarne & S. Assimacopoulos, 1994. The distribu-tion of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. element abun-dances in heterochromatin. Genet. Res., Camb. 64: 183–197.

    CAS  Google Scholar 

  • Craig-Holmes, A.P. & M.W. Shaw, 1971. Polymorphism of human constitutive heterochromatin. Science 174: 702–704.

    PubMed  CAS  Google Scholar 

  • Csink, A.K., R. Linsk & J.A. Birchler, 1994. The Lighten up (Lip) gene of Drosophila melanogaster, a modifier of retroelement expression, position effect variegation and white locus insertion alleles. Genetics 138: 153–163.

    PubMed  CAS  Google Scholar 

  • Devlin, R.H., B. Bingham & B.T. Wakimoto, 1990. The organiza-tion and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 125: 129–140.

    PubMed  CAS  Google Scholar 

  • Dimitri, P., 1991. Cytogenetic analysis of the second chromosome heterochromatin of Drosophila melanogaster.Genetics 127: 553–564.

    PubMed  CAS  Google Scholar 

  • Dimitri, P., B. Arca, L. Berghella & E. Mei, 1997. High genetic instability of heterochromatin after tranposition of the LINE-like I factor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94: 8052–8057.

    Article  PubMed  CAS  Google Scholar 

  • Di Nocera, P., C. Contursi & G. Minchiotti, 1994. LINE-related elements in Drosophila melanogaster. Genetica 94: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Dorer, D. & S. Henikoff, 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophi-la. Cell 77: 993–1002.

    Article  PubMed  CAS  Google Scholar 

  • Eberl, D., B.J. Duyf & A.H. Hilliker, 1993. The role of heterochro-matin in the expression of a heterochromatic gene, the rolled gene of Drosophila melanogaster. Genetics 134: 277–292.

    PubMed  CAS  Google Scholar 

  • Eickbush D.G., T.H. Eickbush & J.H. Werren, 1992. Molecular char-acterization of repetitive DNA sequences from a B chromosome. Chromosoma 101: 575–583.

    Article  PubMed  CAS  Google Scholar 

  • Falk, R., 1961. Nitrogen-treatment effects on rearrangement-induction patterns in Drosophila melanogaster. Int. J. Rad. Biol. 4: 437–455

    Google Scholar 

  • Gall, G.J., E.H. Cohen & M.L. Polan, 1971. Repetitive DNA sequences in Drosophila. Chromosoma 33: 319–344.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, M.B., C.A. Kozac & S.J. O'Brien, 1991. The lake Casitas wild mouse: evolving genetic resistance to retroviral disease. Trends in Genetics 7: 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Gatti, M. & S. Pimpenelli, 1983. Cytological and genetical analysis of the Y chromosome of Drosophila melanogaster. Chromosoma 88: 349–373.

    Article  Google Scholar 

  • Gatti, M. & S. Pimpinelli, 1992. Functional elements in Drosophila melanogaster heterochromatin. Ann. Rev. Genet. 26: 239–275.

    Article  PubMed  CAS  Google Scholar 

  • Gatti, M., S. Bonaccorsi & S. Pimpinelli, 1994. Looking at Drosophi-la mitotic chromosomes. Meth. Cell Biol. 44: 371–391.

    Article  CAS  Google Scholar 

  • Gutknecht, J., D. Sperlich & L. Bachmann, 1995. A species spe-cific satellite DNA family of Drosophila subsilvestris appearing predominantly in B chromosomes. Chromosoma 103: 539–544.

    PubMed  CAS  Google Scholar 

  • John, B., 1988. The biology of heterochromatin, pp. 1–128 In: Heterochromatin: Molecular and structural aspects,R.S. Verma (ed.), Cambridge University Press, Cambridge.

    Google Scholar 

  • Halfer C., 1981. Interstrain heterochromatin polymorphisms in Drosophila melanogaster. Chromosoma 84: 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Hochstenbach R., H. Harhangi, K. Schouren, P. Bindels, R. Suijker-buijk & W. Hennig, 1996. Transcription of gypsy elements in a Y-chromosome male fertility gene of Drosophila hydei. Genetics 142: 437–446.

    PubMed  CAS  Google Scholar 

  • Howe, M., P. Dimitri, M. Berloco & B.T. Wakimoto, 1995. Cis-effects on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics 140: 1033–1045.

    PubMed  CAS  Google Scholar 

  • Heitz, F., 1928. Das Heterochromatin der Moose. Jahrb. Wiss. Bot. 69: 762–818.

    Google Scholar 

  • Heitz, F., 1934. Uber alpha-Heterochromatin sowie Konstanz und Bau der Chromomeren bei Drosophila. Biol. Zentralbl. 45: 588–609.

    Google Scholar 

  • Hilliker, A.J., 1976. Genetic analysis of the centromeric heterochro-matin of chromosome 2 of Drosophila melanogaster. Deficiency mapping of EMS-induced lethal complementation groups. Genet-ics 83: 765–782.

    CAS  Google Scholar 

  • Hutchinson, C.A., S.C. Hardies, D.L. Loeb, W.R. Shehee & M.H. Edgell, 1989. LINEs and related retroposons: Long interspersed repeated sequences in the eucaryotic genome.In Mobile DNA. Am. Society for Microbiology, Washington, D.C.

  • Jones R.N. & H. Rees, 1982. B chromosomes. Academic Press, NewYork.

    Google Scholar 

  • Lankenau, D.H., 1992. The retrotransposon family micropia in Drosophila species. Genetica 86: 230–239.

    Google Scholar 

  • Lansman, R.A., R.O. Shade, T.A. Grigliatti & H.W. Brock, 1987.Evolution of P transposable elements: sequences of Drosophila nebulosa P elements. Proc. Natl. Acad. Sci USA 84: 6491–6495.

    Article  PubMed  CAS  Google Scholar 

  • Le, M.-H., D. Diricka & G.H. Karpen, 1995. Islands of com-plex DNA are widespread in Drosophila centric heterochromatin. Genetics 141: 283–303.

    PubMed  CAS  Google Scholar 

  • Lim J.K. & M.J. Simmons, 1994. Gross chromosome rearrange-ments mediated by transposable elements in Drosophila melanogaster. BioEssays 4: 269–275.

    Article  Google Scholar 

  • Lohe A.R. & H.J. Hilliker, 1995. Return of the H-word (heterochro-matin). Current Opin. Genet. Develop. 5: 746–755.

    Article  CAS  Google Scholar 

  • Lohe, A.R., A.J. Hilliker & P.A. Roberts, 1993. Mapping sim-ple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134: 1149–1174.

    PubMed  CAS  Google Scholar 

  • Lohe, A.R., E.N. Moriyama, D.A. Lidholm & D.L. Hartl, 1995. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12: 62–72.

    PubMed  CAS  Google Scholar 

  • Marcais, B., J.P. Charlieu, B. Allain, E. Brun, M. Bellis & G. Roizes, 1991. On the mode of evolution of alpha satellite DNA in human populations. J. Mol. evol. 33: 42–48.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J.F., 1993. Evolution and consequences of transposable elements. Curr. Opin. Genet. Develop. 3: 855–864.

    Article  CAS  Google Scholar 

  • Miklos, G.L.G., & J.N. Cotsell, 1990. Chromosome structure at interfaces between major chromatin types: _-and_-heterochromatin. BioEssays 12: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Miklos, G.L.G., M. Yamomoto, J. Davies & V. Pirrotta, 1988. Micro-cloning reveals high frequency of repetitive sequences charac-teristic of chromosome 4 and-heterochromatin of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 85: 2051–2055.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery E., B. Charlesworth & C. Langley, 1987. A test for the role of natural selection in the stabization of transposable element copy number in a population of Drosophila melanogater. Genet. Res. 49: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Moore J.K. & J.E. Haber, 1996. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383: 644–646.

    Article  PubMed  Google Scholar 

  • Pardue, M.L., O.N. Danilevskaya, K. Lowenhaupt, F. Slot, & K.L. Traverse, 1996. Drosophila telomeres: new views on chromo-some evolution. Trends Genet. 12: 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, P.R., U. Pich, G. Harrison, A.J. Flavell, J.S. Heslop-Harrison, I. Schubert & A. Kumar, 1996. The Ty-1 copia group retrotrans-posons of Allium cepa are distributed throughout the chromo-somes but are enriched in the terminal heterochromatin. Chro-mosome Res. 4: 357–364.

    Article  CAS  Google Scholar 

  • Pelliccia F., A. Micheli & G. Olivieri, 1985. Inter-and intra-chromosomal distribution of chromatid breaks induced by X-rays during G2 in human lynphocytes. Mutation Res. 150: 293–298.

    PubMed  CAS  Google Scholar 

  • Pimpinelli S., D. Pignone, G. Santini & G. Olivieri, 1976. Mutagen specificity in the induction of chromosomal aberrations in somatic cells of Drosophila melanogaster. Genetics 85: 249–257.

    Google Scholar 

  • Pimpinelli S., M. Berloco, L. Fanti, P. Dimitri, S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggese & M. Gatti, 1995. Transpos-able elements are stable components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 92: 3804–3808.

    Article  PubMed  CAS  Google Scholar 

  • Pimpinelli S. & P. Dimitri, 1989. Cytogenetic organization of the Rsp (Responder) locus in Drosophila melanogaster. Genetics 121: 765–772.

    PubMed  CAS  Google Scholar 

  • Reuter, G., I. Wolff & B. Friede, 1985. Functional properties of the heterochromatic sequences inducing w m 4 position effect varie-gation in Drosophila melanogaster. Chromosoma 93: 132–139.

    Article  Google Scholar 

  • Roseman, R.R., E.A. Johnson, C.K. Rodesch, M. Bjerke, R.N. Nagoshi, P.K. Geyer, 1995. A P element containing suppressor of Hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics 141: 1061–1074.

    PubMed  CAS  Google Scholar 

  • Sheveleyov, Y.Y., M.D. Balakireva & V.A. Gvozdev, 1989. Hete-rochromatic regions in different Drosophila melanogaster stocks contain similar arrangements of moderate repeats with inserted copia-like elements (MDG1). Chromosoma 98: 117–122

    Article  Google Scholar 

  • Steinemann M. & S. Steinemann, 1992. Degenerating Y chromo-somes of Drosophila miranda: A trap for retrotransposons. Proc. Natl. Acad. Sci. USA 89: 7591–7595 (1992)

    Article  PubMed  CAS  Google Scholar 

  • Taruscio, D. & L. Manuelidis, (1991). Integration preferences of endogenous retroviruses. Chromosoma 101: 141–156.

    Article  PubMed  CAS  Google Scholar 

  • Teng, S.-C., B. Kim & A. Gabriel, 1996. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383: 641–644.

    Article  PubMed  Google Scholar 

  • Traverse, L.K. & M.L. Pardue, 1989. Studies of He-T DNA sequences in the pericentric regions of Drosophila melanogaster. Chromosoma 97: 261–271.

    Article  PubMed  CAS  Google Scholar 

  • Vaury, C., A. Bucheton & A. Pelisson, 1989. The _-heterochromatic sequences flanking the I elements are themselves defective trans-posable elements. Chromosoma 98: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • von Stenberg, R.M., G.E. Novick, G.-P. Gao & R.J. Herrera, 1992. Genome canalization: the coevolution of transposable and inter-spersed repetitive elements with single copy DNA. Genetica 86: 106–137.

    Google Scholar 

  • Wakimoto, B.T. & M.G. Hearn, 1990. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of D. melanogaster. Genetics 125: 141–154.

    PubMed  CAS  Google Scholar 

  • Weiler, K.S. & B.T. Wakimoto, 1995. Heterochromatin and gene expression in Drosophila. Ann. Rev. Genet. 29: 577–605.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, M., A. Mitchelson, M. Tudor, K. O'Hare, J. Davies & G.L. Miklos, 1990. Molecular and cytogenetic analisys of the heterochromatin-euchromatin junction region of the Drosophi-la melanogaster X chromosome using cloned DNA sequences. Genetics 125: 821–832.

    PubMed  CAS  Google Scholar 

  • Young, B.S., A. Passion, K.L. Traverse, C. French, & M.L. Par-due, 1983. Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell 34: 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P. & A.C. Spradling, 1994. Insertional mutagenesis of Drosophila heterochromatin with single P elements. Proc. Natl. Acad. Sci. USA 91: 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P. & A.C. Spradling, 1995. The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. Genetics 139: 659–670.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitri, P. Constitutive heterochromatin and transposable elements in Drosophila melanogaster. Genetica 100, 85–93 (1997). https://doi.org/10.1023/A:1018304922862

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018304922862

Navigation