Skip to main content
Log in

Food as the Dominant Pathway of Methylmercury Uptake by Fish

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A field experiment was conducted to determine the degree to which fish accumulated methylmercury (MeHg) via their food or via passive uptake from water through the gills. Finescale dace (Phoxinus neogaeus) were held in 2000 L enclosed pens floating in an undisturbed, oligotrophic lake in northwestern Ontario. Fish were exposed to water containing either low (0.10–0.40 ng L-1), intermediate (0.45–1.30 ng L-1), or high (0.80–2.1 ng L-1) concentrations of MeHg. Zooplankton with either low (0.16–0.18 µg g-1 d.w.) or high (0.28–0.76 µg g-1 d.w.) concentrations of MeHg were added daily to each pen. Fish fed zooplankton with high concentrations of MeHg had significantly higher concentrations of mercury in muscle after 32 days than fish fed zooplankton with low concentrations of MeHg (ANCOVA, P<0.0001). Fish feeding on zooplankton with low concentrations of MeHg had the same amount of Hg in their tissues as fish at the start of the experiment. Uptake from water was at most 15%. This is the first experiment to confirm that food is the dominant pathway of MeHg bioaccumulation in fish at natural levels of MeHg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, F. A. J. and Uthe, J. F.: 1971, At. Absorpt. Newsl. 10, 101.

    Google Scholar 

  • Bloom, N. S., Horvat, M. and Watras, C. J.: 1995, Water, Air, and Soil Pollut. 80, 1257.

    Google Scholar 

  • Bloom, N. S.: 1989, Can. J. Fish. Aquat. Sci. 46, 1131.

    Google Scholar 

  • Bodaly, R. A., Hecky, R. E. and Fudge, R. J. P.: 1984, Can. J. Fish. Aquat. Sci. 41, 682.

    Google Scholar 

  • Bodaly, R. A., Rudd, J. W. M., Fudge, R. J. P and Kelly, C. A.: 1993, Can. J. Fish. Aquat. Sci. 50, 980.

    Google Scholar 

  • Boudou, A., Georgescauld, D. and Desmazes, J. P.: 1983, Aquatic Toxicology, John Wiley and Sons, New York, New York, p. 117.

    Google Scholar 

  • Cabana, G., Tremblay, A., Kalff, J. and Rasmussen, J.: 1994, Can. J. Fish. Aquat. Sci. 51, 381.

    Google Scholar 

  • Driscoll, C. T., Yan, C., Schofield, C. L., Munson, R. and Holsapple, J.: 1994, Environ. Sci. Technol. 28, 136A.

    Google Scholar 

  • Harris, R. C. and Snodgrass, W. J.: 1993, Water Poll. Res. J. Canada 28, 217.

    Google Scholar 

  • Hendzel, M. and Jamieson, D. M.: 1976, Anal. Chem. 48, 926.

    PubMed  Google Scholar 

  • Hewett, S. W. and Johnson, B. L.: 1992, Fish Bioenergetics Model 2. University of Wisconsin Sea Grant Institute WIS-SG-91- 250.

  • Hintelmann, H., Welbourn, P. M. and Evans, R. D.: 1995, Water, Air, and Soil Pollut. 80, 1031.

    Google Scholar 

  • Horvat, M., Bloom, N. S. and Liang, L.: 1993, Anal. Chem. Acta 281, 135.

    Google Scholar 

  • Jensen, S. and Jernelöv, A.: 1969, Nature 223, 753.

    PubMed  Google Scholar 

  • Jernelöv, A. and Lann, H.: 1971, Oikos 22, 403.

    Google Scholar 

  • Johnels, A., Tyler, G. and Westermark, T.: 1979, Ambio 8, 160.

    Google Scholar 

  • Kidd, K. A., Hesslein, R. H., Fudge, R. J. P., Hallard, K. A.: 1995, Water, Air, and Soil Pollut. 80, 1011.

    Google Scholar 

  • Malley, D. F., Stewart, A. R. and Hall, B. D.: 1996, Environ. Tox. Chem. 15, 928.

    Google Scholar 

  • Parks, J.W., Sutton, J. A., Hollinger, J. D. and Russell, D. D.: 1987, Appl. Organomet. Chem. 2, 181.

    Google Scholar 

  • Phillips, G. R. and Buhler, D. R.: 1978, Trans. Am. Fish. Soc. 107, 853.

    Google Scholar 

  • Rodgers, D. W.: 1994, Mercury Pollution: Integration and Synthesis, Lewis Publishers, Boca Raton, p. 427.

    Google Scholar 

  • Rodgers, D. W. and Beamish, F. W. H.: 1981, Can. J. Fish. Aquat. Sci. 38, 1309.

    Google Scholar 

  • Rodgers, D. W. and Beamish, F. W. H.: 1983, Can. J. Fish. Aquat. Sci. 40, 824.

    Google Scholar 

  • Rudd, J. W. M., Furutani, A. and Turner, M. A.: 1980, Appl. Environ. Micro. 40, 777.

    Google Scholar 

  • Spry, D. J. and Wiener, J. G.: 1991, Environ. Pollut. 71, 243.

    PubMed  Google Scholar 

  • St. Louis, V., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Bloom, N. S. and Flett, R. J.: 1994, Can. J. Fish. Aquat. Sci. 51, 1065.

    Google Scholar 

  • Stainton, M. P., Capel, M. J. and Armstrong, F. A. J.: 1977, Fish. Mar. Serv. Misc. Spec. Publ. 2, 180.

    Google Scholar 

  • Watras, C. J., Bloom, N. S., Hudson, R. J. M., Gherini, S., Munson, R., Claas, S. A., Morrison, K. A.

  • Hurley, J., Wiener, J. G., Fitzgerald, W. F., Mason, R., Vandal, G., Powell, D., Rada, R., Rislov, L., Winfrey, M., Elder, J., Krabbenhoft, D., Andren, A. W., Babiarz, C., Porcella, D. B. and Huckabee, J. W.: 1994, Mercury Pollution: Integration and Synthesis, Lewis Publishers, Boca Raton, p. 153.

    Google Scholar 

  • Winfrey, M. R. and Rudd, J. W. M.: 1990, Environ. Tox. Chem. 9, 853.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, B.D., Bodaly, R.A., Fudge, R.J.P. et al. Food as the Dominant Pathway of Methylmercury Uptake by Fish. Water, Air, & Soil Pollution 100, 13–24 (1997). https://doi.org/10.1023/A:1018071406537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018071406537

Navigation