Skip to main content
Log in

Conversion of polycarbosilane (PCS) to SiC-based ceramic Part II Pyrolysis and characterisation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The conversion to ceramic of a commercial polycarbosilane (PCS) under various pyrolysis conditions has been investigated. The products of pyrolysis have been characterised by solid state 29Si and 13C NMR spectroscopy and X-ray diffraction (XRD). Some of the phases identified in the present study were found to differ from those reported previously, particularly in the earlier literature. Oxidation-cured PCS, when pyrolyzed up to 1400 °C in argon, generally produced silicon oxycarbide (SiO x C y ) as the second major phase with β-SiC as the major phase, and smaller amounts of free carbon. With increasing temperature above 1200 °C, the silicon oxycarbide phase decomposed to give β-SiC. Silica (SiO2) was also found to evolve from this silicon oxycarbide phase. Loss of some of the silica, probably by reaction with carbon, was found at 1400 °C, possibly yielding SiO, CO and SiC. At 1500 °C, crystalline α-cristobalite was found as a minor phase with β-SiC as the major phase and a lower amount of free carbon. Pyrolysis in vacuum leads to production and crystallization of β-SiC at a lower temperature than required if pyrolyzed in argon flow. After pyrolysis at 1600 ° in vacuum, the cured PCS converted to almost stoichiometric β-SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Q. Ly, R. Taylor, R. J. Day and F. Heatley, J.Mater.Sci. 36 (2001) 4037.

    Google Scholar 

  2. Y. Hasegawa and K. Okamura, J.Mater.Sci. 18 (1983) 3633.

    Google Scholar 

  3. Y. Hasegawa, ibid. 24 (1989) 1177.

    Google Scholar 

  4. M. Taki, K. Inui, K. Okamura and M. Sato, J.Mater. Sci.Lett. 8 (1989) 918.

    Google Scholar 

  5. G. Soraru, F. Babonneau and J. D. Mackenzie, J.Non-Cryst.Solids 106 (1988) 256.

    Google Scholar 

  6. Idem., J.Mater.Sci. 25 (1990) 3886.

    Google Scholar 

  7. E. Bouillon, F. Langlais, R. Pailler, R. Naslain, F. Cruege, P. V. Huong, J. C. Sarthou, A. Delpuech, C. Laffon, P. Lagarde, M. Monthioux and A. Oberlin, J.Mat.Sci. 26 (1991) 1333.

    Google Scholar 

  8. S. J. Ting, C. J. Chu and J. D. Mackenzie, J.Mater. Res. 7 (1992) 164.

    Google Scholar 

  9. M. Monthioux and O. Delverdier, J.Eur.Ceram.Soc. 16 (1996) 721.

    Google Scholar 

  10. K. Okamura, M. Sato, T. Matsuzawa and Y. Hasegawa, in “3rd Int. Conf. on Ultrastructure Processing of Ceramics, Glasses and Composites” (1987) pp. 501–518.

  11. E. Bouillon, D. Mocaer, J. F. Villeneuve, R. Pailler, R. Naslain, M. Monthioux, A. Oberlin, C. Guimon and G. Pfister, J.Mater.Sci. 26 (1991) 1517.

    Google Scholar 

  12. Y. Sasaki, Y. Nishina, M. Sato and K. Okamura, J.Mater.Sci. 22 (1987) 443.

    Google Scholar 

  13. J. Lipowitz and G. L. Turner, Abstracts of Papers of the American Chemical Society 195 (1988) 74.

    Google Scholar 

  14. K. R. Carduner, G. R. Hatfield, W. A. Ellingson and S. L. Dieckman, in “Handbook of Ceramics and Composites,” Vol. 2, Mechanical Properties and Speciality Applications, edited by N. P. Cheremisinoff (Marcel Dekker, 1992) p. 465.

  15. K. Okamura, M. Sato and Y. Hasegawa, J.Mater.Sci. Lett. 2 (1983) 769.

    Google Scholar 

  16. B. A. Bender, R. W. Rice and J. R. Spann, J.Amer. Ceram.Soc. 70 (1987) C-58.

    Google Scholar 

  17. R. J. Day, V. Piddock, R. Taylor, R. J. Young and M. Zakikhani, J.Mater.Sci. 24 (1989) 2898.

    Google Scholar 

  18. G. R. Hatfield and K. R. Carduner, ibid. 24 (1989) 4209.

    Google Scholar 

  19. T. Ishikawa, Comp.Sci.Technol. 51 (1994) 135.

    Google Scholar 

  20. Y. Maniette and A. Oberlin, J.Mater.Sci. 24 (1989) 3361.

    Google Scholar 

  21. Y. Xu, A. Zangvil, J. Lipowitz, J. A. Rabe and G. A. Zank, J.Amer.Ceram.Soc. 76 (1993) 3034.

    Google Scholar 

  22. L. C. Sawyer, M. Jamiesonz, D. Brikowski, M. Ishaq Haider and R. T. Chen, J.Amer.Ceram.Soc. 70 (1987) 798.

    Google Scholar 

  23. L. C. Sawyer, R. Arons, F. Haimbach, M. Jaffe and K. D. Rappaport, Ceram.Eng.Sci.Proc. 6 (1985) 567.

    Google Scholar 

  24. S. Yajima, K. Okamura, T. Matsuzawa, Y. Hasegawa and T. Shishido, Nature 279 (1979) 706.

    Google Scholar 

  25. A. R. Bunsell and M. H. Berger, Comp.Sci.Technol. 51 (1994) 127.

    Google Scholar 

  26. L. Porte and A. Sartre, J.Mater.Sci. 24 (1989) 271.

    Google Scholar 

  27. C. Laffon, A. M. Flank, P. Lagarde, M. Laridjani, R. Hagege, P. Olry, J. Cotteret, J. Dixmier, J. L. Miquel, H. Hommel and A. P. Legrand, ibid. 24 (1989) 1503.

    Google Scholar 

  28. P. Schreck, C. Vix-Guterl, P. Ehrburger and J. Lahaye, ibid. 27 (1992) 4243.

    Google Scholar 

  29. S. M. Bleay, A. R. Chapman, G. Love and V. D. Scott, ibid. 27 (1992) 5389.

    Google Scholar 

  30. P. Le Coustumer, M. Monthioux and A. Oberlin, J.Eur.Ceram.Soc. 11 (1993) 95.

    Google Scholar 

  31. B. Hahn, R. Weissmann and P. Greil, J.Mater.Sci.Lett. 15 (1996) 1243.

    Google Scholar 

  32. J. Lipowitz, H. A. Freeman, R. T. Chen and E. R. Prack, Adv.Ceram.Mater. 2 (1987) 121.

    Google Scholar 

  33. H. Zhang and C. G. Pantano, J.Amer.Ceram.Soc. 73 (1990) 958.

    Google Scholar 

  34. R. Pampuch, W. Ptak, S. Jonas and J. Stoch, Mater. Sci.Monographs 6 (1980) 435.

    Google Scholar 

  35. G. M. Renlund, S. Prochazka and R. H. Doremus, J.Mater.Res. 6 (1991) 2716.

    Google Scholar 

  36. F. Babonneau, G. D. Soraru, G. D'andrea, S. Dire and L. Bois, Mater.Res.Soc.Symp.Proc. 271 (1992) 789.

    Google Scholar 

  37. G. M. Renlund, S. Prochazka and R. H. Doremus, J.Mater.Res. 6 (1991) 2723.

    Google Scholar 

  38. R. J. P. Corriu, D. Leclercq, P. H. Mutin and A. Vioux, J.Mater.Sci. 30 (1995) 2313.

    Google Scholar 

  39. O. Delverdier, M. Monthioux, D. Mocaer and R. Pailler, J.Eur.Ceram.Soc. 12 (1993) 27.

    Google Scholar 

  40. H. Yao, S. Kovenklioglu and D. M. Kalyon, Chem. Eng.Comm. 96 (1990) 155.

    Google Scholar 

  41. M. Narisawa, S. Oda, S. Kitano and K. Okamura, J.Appl.Polym.Sci. 65 (1997) 261.

    Google Scholar 

  42. R. M. Silverstein, G. Clayton Bassler and T. C. Morrill, “Spectrometric Identification of Organic Compounds,” 5th edn. (Wiley, New York, 1991).

    Google Scholar 

  43. N. Hochet, M. H. Berger and A. R. Bunsell, J.Microsc.Oxford 185 (1997) 243.

    Google Scholar 

  44. H. P. Martin, G. Irmer, G. Schuster and E. Muller, Fresenius J.Anal.Chem. 349 (1994) 160.

    Google Scholar 

  45. Z. F. Zhang, F. Babonneau, R. M. Laine, Y. Mu, J. F. Harrod and J. A. Rahn, J.Amer.Ceram.Soc. 74 (1991) 670.

    Google Scholar 

  46. E. Lippmaa, M. Magi, A. Samoson, G. Engelhardt and A. R. Grimmer, J.Amer. Chem.Soc. 102 (1980) 4889.

    Google Scholar 

  47. G. D. Soraru, G. D'andrea, R. Campostrini, F. Babonneau and G. Mariotto, J.Amer.Ceram.Soc. 78 (1995) 379.

    Google Scholar 

  48. A. T. Hemida, R. Pailler and R. Naslain, J.Mater. Sci. 32 (1997) 2359.

    Google Scholar 

  49. S. Yajima, Ceram.Bull. 62 (1983) 893.

    Google Scholar 

  50. R. Bodet, N. Jia and R. E. Tressler, J.Eur.Ceram.Soc. 16 (1996) 653.

    Google Scholar 

  51. T. F. Cooke, J.Amer.Ceram.Soc. 74 (1991) 2959.

    Google Scholar 

  52. M. Monthioux, D. Cojean, O. Delverdier, P. Lecoustumer and V. Madigou, Microsc.Microanal. Microstruct. 2 (1991) 47.

    Google Scholar 

  53. W. D. Kingery, “Introduction to Ceramics,” 2nd edn. (Wiley-Interscience, 1976), p. 87.

  54. V. G. Gerlivanov, R. A. Rabinovitch, N. M. Balagurova and N. N. Korneev, “Residual Stresses, II: Science and Technology,” Vol. 1 (Elsevier Science, UK, 1992), p. 567.

    Google Scholar 

  55. C. H. Andersson and R. Warren, Composites 15 (1984) 16.

    Google Scholar 

  56. V. D. Krstic, J.Amer.Ceram.Soc. 75 (1992) 170.

    Google Scholar 

  57. R. Bodet, N. Jia and R. E. Tressler, J.Eur.Ceram.Soc. 15 (1995) 997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ly, H.Q., Taylor, R., Day, R.J. et al. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part II Pyrolysis and characterisation. Journal of Materials Science 36, 4045–4057 (2001). https://doi.org/10.1023/A:1017994810727

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017994810727

Keywords

Navigation