Skip to main content
Log in

Precipitation hardening of Cu-Fe-Cr alloys part II Microstructural characterisation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. Promising properties have been measured for the following alloys: Cu-0.7wt%Cr-0.3wt%Fe and Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the microstructural characterisation of these alloys and discusses the mechanical and electrical properties of these alloys in terms of their microstructure, particularly the formation of precipitates. These alloys have evinced properties that warrant further investigation. Cost modelling has shown that Cu-0.7wt%Cr-0.3wt%Fe is approximately 25% cheaper to produce than commercial Cu-1%Cr. It has also been shown to be more cost efficient on a yield stress and % IACS per dollar basis. The reason for the cost saving is that the Cu-0.7%Cr-0.3%Fe alloy can be made with low carbon ferro-chrome additions as the source of chromium rather than the more expensive Cu-Cr master-alloy. For applications in which cost is one of the primary materials selection criteria, it is envisaged that there would be numerous applications in both cast and wrought form, where the Cu-0.7%Cr-0.3%Fe alloy would be more suitable than Cu-1%Cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fernee, J. Nairn and A. Atrens, Precipitation Hardening of Cu-Fe-Cr Alloys, Part I, Mechanical and Electrical Properties, J. Mater. Sci. 36 (2001) 2711.

    Google Scholar 

  2. Metals Handbook, Alloy Phase Diagrams, ASM Handbook, vol. 3, 10th ed. (1990).

  3. J. D. Donnay, J. D. H. G. Donnay, E. G. Cox, O. Kennard and M. V. King, “Crystal Data: Determinative Tables, ” 2nd ed. (American Crystallographic Association (Publishers), 1963).

  4. Z. Bojarski, W. Babinski, H. Morawiec, T. Panek, J. Rasek and D. Stroz Metals Technology (1980) 248.

  5. J. Rys and Z. Rdzawski, ibid. (1980) 32.

  6. B. Reppich, in “Materials Science and Technology-Plastic Deformation and Fracture of Materials, ” Vol. 6, edited by H. Mughrabi (VCH Publishers, New York, 1991) p. 311.

    Google Scholar 

  7. P. A. Thornton and V. J. Colangelo, “Fundamentals of Engineering Materials (Prentice-Hall, NJ, 1985).

    Google Scholar 

  8. J. W. Martin, in “Precipitation Hardening, ” edited by R. Robinson and D. A. Spihaus (Permangon, 1968).

  9. G. C. Weatherly, P. Humble and D. Borland, Acta Metallurgica 27 (1979) 1815.

    Google Scholar 

  10. S. Saji, S. Hori and G. Mima, Transactions Japan Institute of Metals 14 (1973) 82.

    Google Scholar 

  11. V. M. L. Hirata and K. Hirano, Scripta Metallurgica 31 (1994) 117.

    Google Scholar 

  12. Y. Komen and J. Rezek, Metallurgical Transactions 6A (1975) 549.

    Google Scholar 

  13. N. J. Long, C. H. Loyd and M. H. Loretto, “Phase Transformations-Spring Review Course” (Institution of Metallurgists, 1979).

  14. Z. Rdzawski and J. Stobrawa, Scripta Metallurgica 20 (1986) 341.

    Google Scholar 

  15. A. Boltax, Transactions AIME 218 (1960) 812.

    Google Scholar 

  16. R. O. Williams, Transactions of the ASM 52 (1960) 530.

    Google Scholar 

  17. J. Szablewski and B. Kuznicka, Materials Science and Technology 7 (1991) 407.

    Google Scholar 

  18. B. Window, Phil. Mag. 26 (1972) 681.

    Google Scholar 

  19. F. Hornstein and M. Ron, Acta Metall. 22 (1974) 1537.

    Google Scholar 

  20. R. W. Knights and P. Wilkes, Metallurgical Transactions 4 (1973) 2389.

    Google Scholar 

  21. M. G. Hall and H. I. Aaronson, Acta Metall. 34 (1986) 1409.

    Google Scholar 

  22. M. F. Ashby, AIME Conference Proceedings, New York, Metallurgical Society AIME (Publishers), (1966) p. 143.

    Google Scholar 

  23. J. Miyake and M. E. Fine, Acta Metall. 40 (1992) 201.

    Google Scholar 

  24. R. K. Anderson, J. R. Groza, R. L. Dreschfield and D. Ellis, Metallurgical and Materials Transactions 26A (1995) 2197.

    Google Scholar 

  25. L. M. Brown and R. K. Ham, in “Strengthening Methods in Crystals, ” edited by A. Kelly and R. B. Nicholson (Applied Science Publishers Ltd., London, 1971) p. 9.

    Google Scholar 

  26. A. J. Ardell, Metallurgical Transactions 16A (1985) 2131.

    Google Scholar 

  27. American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, 1972).

  28. M. F. Ashby and D. R. H. Jones, “Engineering Materials 1: an Introduction to their Properties and Applications” 10th ed. (Butterworth Heinemann, London, 1995).

    Google Scholar 

  29. E. O. Hall, “Yield Point Phenomena in Metals & Alloys” (Plenum, NY, 1970) p. 38.

    Google Scholar 

  30. K. Matsuura, M. Kitamura and K. Watanabe, Transactions JIM 19 (1978) 53.

    Google Scholar 

  31. A. Rotem, D. Shechtman and A. Rosen, Metallurgical Transactions 19A (1988) 2279.

    Google Scholar 

  32. J. K. Stanley, “Electrical and Magnetic Properties of Metals” (American Society of Metals (Publishers), Metals Park, Ohio, 1963).

    Google Scholar 

  33. R. E. Willet, Wire Journal, Sept (1979) 124.

  34. L. H. Van Vlack, “Materials Science for Engineers” (Addison-Wesley, 1970).

  35. H. Fernee, J. Nairn and A. Atrens, Cold Worked Cu-Fe-Cr Alloys, This Journal.

  36. Affilips, Copper-Chromium Master Alloys, Technical Data sheet no. 920119, produced by Affilips, Biezenstraat 27–31, B-3300, Tienen, Belgium (1994).

    Google Scholar 

  37. A. H. Sully and E. A. Brandes, “Chromium” (Butterworths, London, 1967).

    Google Scholar 

  38. Y. Ohashi, T. Fujino, Y. Taki and T. Nishijima, US Patent no. 5,071,494 (1991).

  39. E. Ence, US Patent no. 3,640,779 (1972).

  40. W. G. Watson and J. F. Breedis, US Patent no. 4,224,066 (1980).

  41. V. V. S. Prasad, V. R. Rao, R. D. K. Misra, P. Krishna Rao and K. M. Gupt, Materials Science and Technology 11 (1995) 1306.

    Google Scholar 

  42. J. J. Cronin, Metallurgical Engineering Quatro 16 (3) (1976) 1.

    Google Scholar 

  43. Metals Handbook, “ASM Handbook, ” Vol. 2, 10th ed. (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernee, H., Nairn, J. & Atrens, A. Precipitation hardening of Cu-Fe-Cr alloys part II Microstructural characterisation. Journal of Materials Science 36, 2721–2741 (2001). https://doi.org/10.1023/A:1017994522958

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017994522958

Keywords

Navigation