Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 250, Issue 3, pp 453–458 | Cite as

Mössbauer Study of the Structure of Fe - Zircon System

  • E. Carreto
  • C. Piña
  • H. Arriola
  • A. Barahona
  • N. Nava
  • V. Castaño
Article

Abstract

Iron-doped silicate (zircon), prepared by a ceramic method with the addition of LiF as mineralizer, was analyzed by X-ray powder diffraction (XRD) and 57Fe Mössbauer spectroscopy to obtain information on the solid solution formation. The results of X-ray diffraction and Mössbauer spectroscopy have shown that only a small fraction of iron, about 1.5 mol%, is incorporated in the zircon structure as paramagnetic Fe3+ species while the remaining Fe3+ cations form magnetic α-Fe2O3 particles which are trapped within the zircon matrix.

Keywords

Iron Spectroscopy Physical Chemistry Zircon Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Burgyan,R. A. Eppler, Am. Ceram. Soc. Bull., 62 (1983) 1001.Google Scholar
  2. 2.
    R. A. Eppler, J. Ceram. Soc. Bull., 56 (1977) 213.Google Scholar
  3. 3.
    G. R. Streatfield, Trans. Br. Ceram. Soc., 89 (1990) 177.Google Scholar
  4. 4.
    R. A. Eppler, Am. Ceram. Soc. Bull., 66 (1987) 1600.Google Scholar
  5. 5.
    C. A. Seabright,H. C. Draker, Am. Ceram. Soc. Bull., 40 (1961) 1.Google Scholar
  6. 6.
    R. Carter, Ceram. Eng. Sci.Proc., 8 (1987) 1156.Google Scholar
  7. 7.
    R. A. Eppler, J. Am. Cer. Soc., 53 (1970) 457.Google Scholar
  8. 8.
    R. W. Batchelor, Trans. Brit. Ceram. Soc., 73 (1974) 297.Google Scholar
  9. 9.
    C. A. Seabright, U.S. Patent 1,441,447 (1948).Google Scholar
  10. 10.
    V. I. Matkovich,P. M. Corbett, J. Amer. Ceram. Soc., 44 (1961) 128.Google Scholar
  11. 11.
    T. Demiray,D. K. Nath,F. A. Hummel, J. Amer. Ceram. Soc., 53 (1970) 1.Google Scholar
  12. 12.
    B. T. Bell, U.S. Patent 3, 573, 080 (1971).Google Scholar
  13. 13.
    C. A. Seabright, U.S. Patent 3,166,430 (1965).Google Scholar
  14. 14.
    J. E. Marquis, R. E. Carpenter, U.S. Patent 3,189,475 (1965).Google Scholar
  15. 15.
    C. H. Li,D. R. Eppler,R. A. Eppler, Ceram. Eng. Sci. Proc., 13 (1992) 109.Google Scholar
  16. 16.
    C. T. Decker, Ceram. Eng. Sci.Proc., 13 (1992) 119.Google Scholar
  17. 17.
    G. MonrÓs,J. Carda,M. A. Tena,P. Escribano,M. Sales,J. AlarcÓn, J. Europ. Ceram. Soc., 11 (1993) 77.Google Scholar
  18. 18.
    I. NÚÑes,J. V. PorÉ,E. Cordoncillo,V. Esteve,J. Carda, Euro-Ceramics V European Ceram. Soc. Conf., 22–26 June, Trans Tech Publications Ltd., Switzerland, 1997.Google Scholar
  19. 19.
    F. J. Berry,D. Eadon,J. Holloway,E. Smart, J. Mater. Chem., 6 (1996) 221.Google Scholar
  20. 20.
    P. Tartaj,T. GonzÁlez-CarreÑo,C. J. Serna,M. OcaÑa, J. Solid State Chem., 128 (1997) 102.Google Scholar
  21. 21.
    Y. Shi,X. Huang,M. Ruan,D. Yan, Mater. Letters, 23 (1995) 247.Google Scholar
  22. 22.
    K. Chen,Y. Fan,Z. Hu,Q. Yan, J. Mater. Chem., 6 (1996) 1041.Google Scholar
  23. 23.
    J. E. Huheey,E. A. Keiter,R. L. Keiter, Química Inorgánica: Principios de Estructura y Reactividad, Harla, México, 1981.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2001

Authors and Affiliations

  • E. Carreto
    • 1
  • C. Piña
    • 2
  • H. Arriola
    • 2
  • A. Barahona
    • 3
  • N. Nava
    • 4
  • V. Castaño
    • 1
  1. 1.Instituto de FísicaU.N.A.M.Querétaro, QuerétaroMexico
  2. 2.DEPg., Facultad de Química, U.N.A.MUniversitaria CoyoacanD.F. MéxicoMexico
  3. 3.Centro de Química, Ing. Química ICUAPC.U. Puebla, Pue., C.PMexico
  4. 4.Instituto Mexicano del PetróleoMéxico, D.F.Mexico

Personalised recommendations