Skip to main content
Log in

A Group Algebra for Inductive Limit Groups. Continuity Problems of the Canonical Commutation Relations

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Given an inductive limit group \(G = \underrightarrow {\lim }G_\beta ,\beta \in \Gamma\) where each \(G_\beta\) is locally compact, and a continuous two-cocycle \(\rho \in Z^2 (G,T)\), we construct a C*-algebra \( L \)group algebra \( C_\rho ^* (G_d )\) is imbedded in its multiplier algebra \( M(L) \), and the representations of \( L \) are identified with the strong operator continuous\( \rho - {\text{representation}} \) of G. If any of these representations are faithful, the above imbedding is faithful. When G is locally compact, \( L \) is precisely \( C_\rho ^* (G) \), the twisted group algebra of G, and for these reasons we regard \( L \) in the general case as a twisted group algebra for G. Applying this construction to the CCR-algebra over an infinite dimensional symplectic space (S,\,B),we realise the regular representations as the representation space of the C*-algebra \( L \), and show that pointwise continuous symplectic group actions on (S,\, B) produce pointwise continuous actions on \( L \), though not on the CCR-algebra. We also develop the theory to accommodate and classify 'partially regular' representations, i.e. representations which are strong operator continuous on some subgroup H of G (of suitable type) but not necessarily on G, given that such representations occur in constrained quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, F.: PhD thesis; and with Morchio G. and Strocchi F.: Algebraic fermion bosonization, Lett. Math. Phys. 26 (1993), 13–22.

    Google Scholar 

  2. Amann, A.: Invariant states of C*-systems without norm continuity properties, J. Math. Phys. 32 (1991), 739–743.

    Google Scholar 

  3. Araki, H. and Woods, E. J.: Topologies induced by representations of the canonical commutation relations, Rep. Math. Phys. 4 (1973), 227–254.

    Google Scholar 

  4. Bichteler, K.: A generalisation to the non-separable case of Takesaki's duality theorem for C*-algebras, Invent. Math. 9 (1969), 89–98.

    Google Scholar 

  5. Blackadar, B.: K-theory for Operator Algebras, Springer, New York, 1986.

    Google Scholar 

  6. Boyer, R. P.: Representation theory of U (∞), Proc. Symp. Pure Math. 51(2) (1990), 55–60.

    Google Scholar 

  7. Bratteli, O. and Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, New York, 1979.

    Google Scholar 

  8. Bratteli, O. and Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics II. Springer, New York, 1979.

    Google Scholar 

  9. Dixmier, J.: C*-algebras, North-Holland, Amsterdam, 1977.

    Google Scholar 

  10. Fannes, M. and Verbeure, A.: On momentum states in quantum mechanics, Ann. Inst. H. Poincaré Phys. Theor. 20 (1974), 291–296.

    Google Scholar 

  11. Folland, G.: Harmonic analysis in phase space, Annals of Mathematics Studies 122, Princeton Univ. Press, Princeton, NJ, 1989.

    Google Scholar 

  12. Goderis, D., Verbeure, A., and Vets, P.: Non-commutative central limits, Probab. Theory Related Fields 82 (1989), 527–544.

    Google Scholar 

  13. Grundling, H. and Hurst, C. A.: A note on regular states and supplementary conditions, Lett. Math. Phys. 15 (1988), 205. Erratum: Lett. Math. Phys. 17 (1989), 173.

    Google Scholar 

  14. Hewitt, E. and Ross, K. A.: Abstract Harmonic Analysis, Vol. 1, Springer, Berlin, 1963.

    Google Scholar 

  15. Kastler, D.: The C*-algebras of a free boson field, Commun. Math. Phys. 1 (1965), 14.

    Google Scholar 

  16. Manuceau, J.: C*-algebre de relations de commutation, Ann. Inst. Henri Poincaré 8 (1968), 139–161.

    Google Scholar 

  17. Manuceau, J., Sirugue, M., Testard, D., and Verbeure, A.: The smallest C*-algebra for the canonical commutation relations, Commun. Math. Phys. 32 (1973), 231–243.

    Google Scholar 

  18. Naimark, M. A.: Normed Algebras, Wolters-Noordhoff, Groningen, 1972.

    Google Scholar 

  19. Narnhofer, H. and Thirring, W.: Covariant QED without indefinite metric, Rev. Math. Phys. (Special issue) (1992), 197–211.

  20. Packer, J. A. and Raeburn, I.: Twisted crossed products of C*-algebras, Math. Proc. Camb. Phil. Soc. 106 (1989), 293–311.

    Google Scholar 

  21. Pedersen, G. K.: C*-algebras and Their Automorphism Groups, Academic Press, London, 1979.

    Google Scholar 

  22. Pickrell, D.: On the Mickelsson-Faddeev extensions and unitary representations, Commun. Math. Phys. 123 (1989), 617–624.

    Google Scholar 

  23. Reed, M. and Simon, B.: Methods of Modern Mathematical Physics, Vol. 1, Academic Press, New York, 1980.

    Google Scholar 

  24. Rieffel, M.: Quantization and C*-algebras, in R. S. Doran (ed.), C*-algebras 1943–1993, a Fifty Year Celebration. Contemp. Math. 167, pp. 67–97.

  25. Robinson, P. L.: Symplectic pathology, Quart. J. Math. Oxford 44 (1993), 101–107.

    Google Scholar 

  26. Schaflitzel, R.: Decompositions of regular representations of the canonical commutation relations, Publ. RIMS, Kyoto Univ. 26 (1990), 1019–1047.

    Google Scholar 

  27. Segal, I. E.: Foundations of the theory of dynamical systems of infinitely many degrees of freedom, II, Canad. J. Math. 13 (1962), 1–18.

    Google Scholar 

  28. Segal, I. E.: Representations of the Canonical Commutation Relations, Cargése Lectures in Theoretical Physics, Gordon and Breach, London, 1967, pp. 107–170.

    Google Scholar 

  29. Slawny, J.: On factor representations and the C*-algebra of the canonical commutation relations, Commun. Math. Phys. 24 (1972), 151–170.

    Google Scholar 

  30. Strătilă, S. and Voiculescu, D.: Representations of AF-algebras and the group U(∞), Lect. Notes Math. 486, Springer, Berlin, 1975.

  31. Takeda, Z.: Inductive limit and infinite direct product of operator algebras, Tohoku Math. J. 7 (1955), 67–86.

    Google Scholar 

  32. Takesaki, M.: A duality in the representation theory of C*-algebras, Ann. Math. 85 (1967), 370–382.

    Google Scholar 

  33. Wegge-Olsen, N. E.: K-theory and C*-algebras, Oxford Univ. Press, Oxford, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grundling, H. A Group Algebra for Inductive Limit Groups. Continuity Problems of the Canonical Commutation Relations. Acta Applicandae Mathematicae 46, 107–145 (1997). https://doi.org/10.1023/A:1017988601883

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017988601883

Navigation