Skip to main content
Log in

Ultrasonic determination of the temperature and hydrostatic pressure dependences of the elastic properties of ceramic titanium diboride

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pulse-echo-overlap measurements of ultrasonic wave velocity have been used to determine the elastic stiffness moduli and related elastic properties of titanium diboride (TiB2) ceramic samples as functions of temperature in the range 130–295 K and hydrostatic pressure up to 0.2 GPa at room temperature. TiB2 is an elastically stiff but light ceramic: at 295 K, the longitudinal stiffness (C L ), shear stiffness (μ), adiabatic bulk modulus (B S), Young's modulus (E) and Poisson's ratio (σ) are 612 GPa, 252 GPa, 276 GPa, 579 GPa and 0.151, respectively. The adiabatic bulk modulus B S is in good agreement with the results of recent theoretical calculations. All elastic moduli increase with decreasing temperature and do not show any pronounced unusual effects. The results of measurements of the effects of hydrostatic pressure on the ultrasonic wave velocity have been used to determine the hydrostatic-pressure derivatives of elastic stiffnesses and the acoustic-mode Grüneisen parameters. The values determined at 295 K for the hydrostatic-pressure derivatives (∂C L /∂P) P=0, (∂μ/∂P) P=0 and (∂B S/∂P) P=0 are 7.29 ± 0.1, 2.53 ± 0.1 and 3.91 ± 0.1, respectively. The hydrostatic-pressure derivative (∂B S/∂P) P=0 of the bulk modulus of TiB2 ceramic is found to be larger than that estimated previously from uniaxial shock-wave loading experiments. The longitudinal (γL), shear (γS), and mean (γel) acoustic-mode Grüneisen parameters of TiB2 are positive: the zone-centre acoustic phonons stiffen under pressure in the usual way. Since the acoustic Debye temperature ΘD (=1190 K) is very high, the shear modes provide a substantial contribution to the acoustic phonon population at room temperature. Knowledge of the elastic and nonlinear acoustic properties sheds light on the thermal properties of ceramic TiB2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Castaing and P. Costa, in “Boron and Refractory Borides,” edited by V. I. Matkovich (Springer-Verlag, New York, 1977) p.390.

    Google Scholar 

  2. J. Castaing, R. Caudron, G. Toupance and P. Costa,Solid State Commun. 7 (1969) 1453.

    Google Scholar 

  3. G. V. Samsonov and B. A. Kovenskaya, in “Boron and Refractory Borides,” edited byV. I. Matkovich (Springer-Verlag, New York, 1977) p.19.

    Google Scholar 

  4. K. Lie, R. Brydson and H. Davock, Phys.Rev.B 59 (1999) 5361.

    Google Scholar 

  5. M. K. Ferber, P. F. Becher and C. B. Finch, J.Amer. Ceram.Soc. 66 (1983) C-2.

    Google Scholar 

  6. V. J. Tennery, C. B. Finch, C. S. Yust and G. W. CLARK, in “Science of Hard Materials,” edited by R. K. Viswanadham (Plenum Press, New York, 1983) p.891.

    Google Scholar 

  7. P. F. Becher, C. B. Finch and M. K. Ferber, J.Mater. Sci.Lett. 5 (1986) 195.

    Google Scholar 

  8. A. Abbate, J. Frankel and D. P. Dandekar, in “Recent Trends in High Pressure Research,” edited by A. K. Singh (Oxford, New Delhi, 1992) p.881.

    Google Scholar 

  9. D. E. Wiley, W. R. Manning and O. Hunter Jr., J.Less-Common Metals 18 (1969) 149.

    Google Scholar 

  10. W. H. Gust, A. C. Holt and E. B. Royce,J.Appl.Phys. 44 (1973)550.

    Google Scholar 

  11. H. R. Baumgartner and R. A. Steiger, J.Amer.Ceram. Soc.67 (1984) 207.

    Google Scholar 

  12. A. Bellosi, T. Graziani, S. Guicciardi and A. Tampieri, in“Special Ceramics 9,” British Ceramic Proceedings, No. 49 (Institute of Ceramics, Stoke on Trent, 1992) p.163.

    Google Scholar 

  13. R. A. Andrievski and B. U. Asanov, J.Mater.Sci.Lett. 10 (1991) 147.

    Google Scholar 

  14. D. J. Green, M.-J. Pan and J. R. Hellmann, in “Fracture Mechanics of Ceramics, Vol. 12,” edited by R. C. Bradt et al. (Plenum Press, New York, 1996) p.333.

    Google Scholar 

  15. M.-J. Pan, P. A. Hoffman, D. J. Green and J. R. Hellman, J.Amer.Ceram.Soc.80 (1997) 692.

    Google Scholar 

  16. D. P. Dandekar and D. C. Benfanti, J.Appl.Phys.73 (1993) 673.

    Google Scholar 

  17. D. J. Steinberg,J.de Physique IV, Colloque C3, suppl.au J. de Physique III, Vol. 1 (1991) C3–837.

    Google Scholar 

  18. M. I. Mendelson,J.Amer.Ceram.Soc. 52 (1969) 443.

    Google Scholar 

  19. E. P. Papadakis, J.Acoust.Soc.Am. 42 (1967) 1045.

    Google Scholar 

  20. E. Kittinger, Ultrasonics 15 (1977) 30.

    Google Scholar 

  21. R. N. Thurston and K. Brugger, Phys.Rev.133 (1964) A1604.

    Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, “Theory of Elasticity,” 3rd ed. (Pergamon Press, Oxford,1986).

    Google Scholar 

  23. O. L. Anderson,J.Phys.Chem.Solids 24 (1963)909.

    Google Scholar 

  24. A. G. Evans,Acta Metall.26 (1978)1845.

    Google Scholar 

  25. E. D. Case, J. R. Smyth and O. Hunter,J.Mater.Sci. 15 (1980) 149.

    Google Scholar 

  26. P. S. Spoor, J. D. Maynard, M. J. Pan, D. J. Green, J. R. Hellman and T. Tanaka, Appl.Phys.Lett. 70 (1997) 1959.

    Google Scholar 

  27. J. J. Gilman and B. W. Roberts,J.Appl.Phys.32(1961) 1405.

    Google Scholar 

  28. V. N. Gurin and V. S. Sinelnikova, in “Boron and Refractory Borides,” edited by V. I. Matkovich (Springer-Verlag, New York, 1977) p.377.

    Google Scholar 

  29. P. E. Van Camp and V. E. Van Doren, High Press.Res. 13 (1995) 335.

    Google Scholar 

  30. S. I. Wright, J.Appl.Cryst.27 (1994) 794.

    Google Scholar 

  31. F. W. Vahldiek, J.Less-Common Metals 12 (1967) 202.

    Google Scholar 

  32. M. G. Miksic, Tech. Repr. Nr. 032–414, Polytech. Inst. Brooklyn, 1963, p.12.

  33. D. Singh and Y. P. Varshni, Phys.Rev.B 24 (1981) 4340.

    Google Scholar 

  34. Y. S. Tyan, L. E. Toth and Y. A. Chang, J.Phys.Chem. Solids 30 (1969) 785.

    Google Scholar 

  35. R. N. Thurston,Proc.IEEE 53 (1965) 1320.

    Google Scholar 

  36. S. P. Marsh (ed.), “LASL Shock Hugoniot Data” (University of California Press, Berkeley, 1980), p.354.

    Google Scholar 

  37. W. Wolf, R. Podloucky, T. Antretter and F. D. Fischer, Philos.Mag.B 79 (1999) 839.

    Google Scholar 

  38. F. D. Murnaghan, Proc.Natl.Acad.Sci.USA 30 (1944) 244.

    Google Scholar 

  39. S. P. Dodd, M. Cankurtaran, G. A. Saunders and B. James, J.Mater.Sci. 36 (2001) 723.

    Google Scholar 

  40. C. A. Perottoni, A. S. Pereira and J. A. H. Da Jornada, J.Phys.: Condens.Matter 12 (2000) 7205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodd, S.P., Cankurtaran, M., Saunders, G.A. et al. Ultrasonic determination of the temperature and hydrostatic pressure dependences of the elastic properties of ceramic titanium diboride. Journal of Materials Science 36, 3989–3996 (2001). https://doi.org/10.1023/A:1017982508001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017982508001

Keywords

Navigation