Skip to main content
Log in

Group Cohomology, Harmonic Functions and the First L 2 -Betti Number

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

For an infinite, finitely generated group Γ, we study the first cohomology group H 1(Γ,λΓ) with coefficients in the left regular representation λΓ of Γ on ℓ2(Γ). We first prove thatH Γ(Γ, C Γ) embeds into HΓ(Γ,λΓ); as a consequence, ifH Γ(Γ,λΓ)=0, then Γ is not amenable with one end. For a Cayley graph X of Γ, denote by HD(X) the space of harmonic functions on X with finite Dirichlet sum. We show that, if Γ is not amenable, then there is a natural isomorphism betweenH Γ(Γ,λΓ) and \(HD(X)/\mathbb{C} \) (the latter space being isomorphic to the first Lℓ-cohomology space of Γ). We draw the following consequences:

(1) If Γ has infinitely many ends, then \(HD(X) \ne \mathbb{C} \);

(2) If Γ has Kazhdan's property (T)>, then \(HD(X) = \mathbb{C} \);

(3) The property H 1(Γ, λΓ)=0 is a quasi-isometry invariant;

(4) Either HΓ(Γ,λΓ) or HΓ(Γ,λΓ) is infinite-dimensional;

(5) If \(\Gamma = \Gamma _1 \times \Gamma _2 \) with \(\Gamma <Superscript>1</Superscript> \) non-amenable and \(\Gamma <Superscript>2</Superscript> \) infinite, then HΓ(Γ,λΓ)=0

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arapura, D., Bressler, P. and Ramachandran, M.: On the fundamental group of a compact Kähler manifold, Duke Math. J. 68(1992), 477-488.

    Google Scholar 

  2. Blanc, P.: Sur la cohomologie continue des groupes localement compacts, Ann. Scient. Ec. Norm. Sup. (4ème série) 12(1979), 137-168.

    Google Scholar 

  3. Borel, A. and Harder, G.: Existence of discrete cocompact subgroups of reductive groups over local fieds, J. reine angew. Math. 298(1978), 53-64.

    Google Scholar 

  4. Borel, A. and Wallach, N.: Continuous cohomology, discrete subgroups and representations of reductive groups, Ann. Math. Stud., Princeton Univ. Press, 1980.

  5. Cartwright, D. I., Mlotkowski, W. and Steger, T.: Property (T) and Ã2-groups, Ann. Inst. Fourier 44(1994), 213-248.

    Google Scholar 

  6. Cartwright, D. I. and Woess, W.: Infinite graphs with nonconstant Dirichlet finite harmonic functions, SIAM J. Disc. Math. 5(1992), 380-385.

    Google Scholar 

  7. Cheeger, J. and Gromov, M.: Bounds on the von Neumann dimension of L2-cohomology and the Gauss-Bonnet theorem for open manifolds, J. Differ. Geometry 21(1985), 1-34.

    Google Scholar 

  8. Cheeger, J. and Gromov, M.: L2-cohomology and group cohomology, Topology 25(1986), 189-215.

    Google Scholar 

  9. Connes, A. and Jones, V.F.R.: Property T for von Neumann algebras, Bull. London Math. Soc. 17(1985), 57-62.

    Google Scholar 

  10. Connes, A. and Moscovici, H.: The L2-index theorem for homogeneous spaces of Lie groups, Ann. Math. 115(1982), 291-330.

    Google Scholar 

  11. Delorme, P.: 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus et représentations, Bull. Soc. Math. France 105(1977), 281-336.

    Google Scholar 

  12. Eckmann, B.: Lois de Kirchhoff et fonctions discrètes harmoniques, Bull. Soc. Vaud. Sc. Nat. 63(1945), 67-78.

    Google Scholar 

  13. Ghys, E. and de la Harpe, P. (eds.): Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser, 1990.

  14. Gromov, M.: Sur le groupe fondamental d'une variété kählérienne, C. R. Acad. Sci. Paris 308Sér. I (1989), 67-70.

    Google Scholar 

  15. Gromov, M.: Asymptotic invariants of infinite groups, Lect. Notes Ser. 182, London Math. Soc. 1993.

  16. Guichardet, A.: Sur la cohomologie des groupes topologiques II, Bull. Sc. Math. (2ème série) 96(1972), 305-332.

    Google Scholar 

  17. Guichardet, A.: Etude de la 1-cohomologie et de la topologie du dual pour les groupes de Lie à radical abé lien, Math. Ann. 228(1977), 215-232.

    Google Scholar 

  18. Guichardet, A.: Cohomologie des groupes topologiques et des algèbres de Lie, Cedic - F. Nathan, 1980.

  19. de la Harpe, P. and Valette, A.: La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. France 1989.

  20. de la Harpe, P., Robertson, A. G. and Valette, A.: On the spectrum of the sum of generators for a finitely generated group, Israel J. Math. 81(1993), 65-96.

    Google Scholar 

  21. Hopf, H.: Enden offener Räume und unendliche diskontinuierliche Gruppen, Comment. Math. Helv. 16(1943), 81-100.

    Google Scholar 

  22. Houghton, C. H.: Ends of groups and the associated first cohomology groups, J. London Math. Soc. 6(1972), 81-92.

    Google Scholar 

  23. Jolissaint, P.: Property T for discrete groups in terms of their regular representation, Math. Ann. 297(1993), 539-551.

    Google Scholar 

  24. Lück, W.: L2-Betti numbers of mapping tori and groups, Topology 33(1994), 203-214.

    Google Scholar 

  25. Lück, W.: Approximating L2-invariants by their finite-dimensional analogues, GAFA 4(1994), 455-481.

    Google Scholar 

  26. Markvorsen, S., McGuinness, S. and Thomassen, C.: Transient random walks on graphs and metric spaces with applications to hyperbolic surfaces, Proc. London Math. Soc. (3) 64(1992), 1-20.

    Google Scholar 

  27. Paschke, W. L.: A numerical invariant for finitely generated groups via actions on graphs, Math. Scand. 72(1993), 148-160.

    Google Scholar 

  28. Paschke, W. L.: An invariant for finitely presented ℂG-modules, Math. Ann. 301(1995), 325-337.

    Google Scholar 

  29. Pichaud, J.: 1-cohomologie de représentations induites, J. Maths. Pures et Appl. 56(1977), 339-366.

    Google Scholar 

  30. Poenaru, V.: Groupes discrets, Lect. Notes in Math. 421, Springer-Verlag, Berlin, 1974.

    Google Scholar 

  31. Robertson, A. G.: Property (T) for II1-factors and unitary representations of Kazhdan groups, Math. Ann. 296(1993), 547-555.

    Google Scholar 

  32. Soardi, P. M.: Rough isometries and Dirichlet finite harmonic functions on graphs, Proc. Amer Math. Soc. 119(1993), 1239-1248.

    Google Scholar 

  33. Soardi, P. M. and Woess, W.: Uniqueness of currents in infinite resistive networks, Discrete Applied Math. 31(1991), 37-49.

    Google Scholar 

  34. Swan, R. G.: Groups of cohomological dimension one, J. Algebra 12(1969), 585-601.

    Google Scholar 

  35. Thomassen, C.: Transient random walks, harmonic functions, and electric currents in infinite resistive networks, preprint, 1990.

  36. Walter, M. E.: W*-algebras and nonabelian harmonic analysis, J. Funct. Anal. 11(1972), 17-38.

    Google Scholar 

  37. Woess, W.: Random walks on infinite graphs and groups - a survey on selected topics, Bull. London Math. Soc. 26(1994), 1-60.

    Google Scholar 

  38. Yamasaki, M.: Discrete potentials on infinite networks, Mem. Fac. Sci., Shimane Univ., 13(1979), 31-44.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekka, M.E.B., Valette, A. Group Cohomology, Harmonic Functions and the First L 2 -Betti Number. Potential Analysis 6, 313–326 (1997). https://doi.org/10.1023/A:1017974406074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017974406074

Navigation