Skip to main content
Log in

Review Grain and subgrain characterisation by electron backscatter diffraction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The application of automated Electron Backscatter Diffraction (EBSD) in the scanning electron microscope, to the quantitative analysis of grain and subgrain structures is discussed and compared with conventional methods of quantitative metallography. It is shown that the technique has reached a state of maturity such that linescans and maps can routinely be obtained and analysed using commercially available equipment and that EBSD in a Field Emission SEM (FEGSEM) allows quantitative analysis of grain/subgrains as small as ∼0.2 μm. EBSD can often give more accurate measurements of grain and subgrain size than conventional imaging methods, often in comparable times. Subgrain/cell measurements may be made more easily than in the TEM although the limited angular resolution of EBSD may be problematic in some cases. Additional information available from EBSD and not from conventional microscopy, gives a new dimension to quantitative metallography. Texture and its correlation with grain or subgrain size, shape and position are readily measured. Boundary misorientations, which are readily obtainable from EBSD, enable the distribution of boundary types to be determined and CSL boundaries can be identified and measured. The spatial distribution of Stored Energy in a sample and the amount of Recrystallization may also be measured by EBSD methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. British Standard BS4490:1989, British Standards Institute, London (1989).

  2. E. E. Underwood, “Quantitative Stereology” (Addison-Wesley, Reading, MA, 1970).

    Google Scholar 

  3. B. Hutchinson, L. Ryde and E. Lindh, Math.Sci.Eng. A257 (1998) 9.

    Google Scholar 

  4. H. S. Ubhi, P. Holdway, D. Baxter and S. Pitman, DERA, Farnborough (private communication).

  5. F. J. Humphreys, in “Quantitative Microscopy of High Temperature Materials,” edited by A. Strang (Institute of Materials, in press).

  6. A. J. Wilkinson and P. B. Hirsch, Micron 28 (1997) 279.

    Google Scholar 

  7. V. Randle and O. Engler, “An Introduction to Texture Analysis” (Gordon and Breach, Amsterdam, 2000).

    Google Scholar 

  8. M. N. Alam, M. Blackman and D. W. Pashley, Proc. Royal Soc.Lond. A221 (1954) 224.

    Google Scholar 

  9. D. J. Dingley and V. Randle, J.Mater.Sci. 27 (1992) 4545.

    Google Scholar 

  10. V. Randle, “Microtexture Determination” (Institute of Materials, London, 1992).

    Google Scholar 

  11. B. L. Adams, Ultramicroscopy 67 (1997) 11.

    Google Scholar 

  12. D. P. Field, ibid. 67 (1997) 1.

    Google Scholar 

  13. S. I. Wright and B. L. Adams, Metall.Trans 23A (1992) 759.

    Google Scholar 

  14. N. C. Krieger Lassen, D. Juul Jensen and K.Conradsen, Scanning Microsc. 6 (1992) 115.

    Google Scholar 

  15. B. L. Adams, S. I. Wright and K. Kunze, Met.Mat. Trans. 24A (1993) 819.

    Google Scholar 

  16. F. J. Humphreys and I. Brough, J.Microscopy 195 (1999) 6.

    Google Scholar 

  17. D. J. Prior, P. W. Trimby, U. D. Weber and D. J. Dingley, Mineral.Mag. 60 (1996) 859.

    Google Scholar 

  18. A. P. Day and T. E. Quested, J.Microscopy 195 (1999) 186.

    Google Scholar 

  19. J. R. Michael, Microsc.Microanal. 5 (1999) 218.

    Google Scholar 

  20. F. J. Humphreys (2000). VMAP is a suite of programmes developed for quantitative analysis of the EBSD data generated by the HKL Channel acquisition system. It can be made available on request.

  21. Idem., J.Microscopy 195 (1999) 170.

  22. T. Pettersen, G. Heiberg and J. Hjelen, in Proc. ICEM 14, Cancun, Mexico, 3 (1998) 775.

    Google Scholar 

  23. F. J. Humphreys, Y. Huang, I. Brough and C. Harris, J.Microscopy 195 (1999) 212.

    Google Scholar 

  24. J. L. Goldstein, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori and E. Lifshin, “Scanning Electron Microscopy and X-ray Microanalysis” (Plenum, New York, 1992).

    Google Scholar 

  25. N. C. Krieger Lassen, J.Microscopy 181 (1996) 72.

    Google Scholar 

  26. A. J. Wilkinson, in Proc. EMAG99. Inst.Phys.Conf.Ser. 161 (1999) 115.

    Google Scholar 

  27. D. J. Prior, J.Microscopy 195 (1999) 217.

    Google Scholar 

  28. K. Kunze, B. L. Adams, F. Heidelbach and H. R. Wenk, in 10th Int Conf. on Textures (ICOTOM10), edited by H. Bunge (Clausthal, Germany, 1993), 1243.

    Google Scholar 

  29. D. J. Prior, A. P. Boyle, F. Brenker, M. Cheadle, A. Day, G. Lopez, G. J. Potts, S. Reddy, R. Spiess, N. E. Timms, P. Trimby, J. Wheeler and L. ZetterstrÖm, American Mineralogist 84 (1999) 1741.

    Google Scholar 

  30. R. T. De Hoff and F. N. Rhines, “Quantitative Microscopy” (McGraw Hill, New York, 1968).

    Google Scholar 

  31. J. K. Mackenzie, Biometrika 45 (1958) 229.

    Google Scholar 

  32. S. I. Wright and U. F. Kocks, in Proc. 11th Int. Conf. on Texture, Xian, edited by Z. Liang (Int Academic Publishers, Beijing), 1 (1996) 53.

    Google Scholar 

  33. D. J. Dingley and D. P. Field, Mater.Sci.Technol. 13 (1997) 69.

    Google Scholar 

  34. R. L. Fullman, Trans.AIME 197 (1953) 447.

    Google Scholar 

  35. Y. Huang and F. J. Humphreys, Acta Mater. 48 (2000) 2017.

    Google Scholar 

  36. W. Yang, B. L. Adams and M. De Graef, in Proc. 11th Int Conf. on Textures (ICOTOM11), edited by J. Szpunar, Montreal, (1999) 192.

  37. B. L. Adams, in Proc. 11th Int Conf. on Textures (ICOTOM11), Montreal, edited by J. Szpunar, (1999) p. 9.

  38. D. Dyson, Proc.Royal Mic.Soc. 35(2) (2000) 147.

    Google Scholar 

  39. X. Huang and D. J. Jensen, in Proc. EBSD Seminar, TMS Fall meeting (2000), in press.

  40. N. C. Krieger Lassen, D. Juul Jensen and K. Conradsen, Acta Crystall. A50 (1994) 741.

    Google Scholar 

  41. M. Humbert, N. Gey, J. Muller and C. Esling, J.App.Cryst. 29 (1996) 662.

    Google Scholar 

  42. F. J. Humphreys, P. S. Bate and P. J. Hurley, J.Microsc. (2000), in press.

  43. M. Kuwahara and S. Eiho, in “Digital Processing of Biomedical Images” edited by K. Preston and M. Onoe (Plenum Press, New York, 1976) p. 187.

    Google Scholar 

  44. P. J. Hurley and F. J. Humphreys, in Proc. 5th Int Conf. on Recrystallization, Aachen, edited by G. Gottstein and D. Molodov (2001), in press.

  45. R. A. Schwarzer and H. Weiland, in Proc. 7th Int Conf. on Textures (ICOTOM7), Zwidjendrecht, edited by C. M. Brackman (Netherlands Soc. for Mats. Sci. 1984), p. 839.

  46. A. Bardal, I. Lindseth, H. E. Vatne and E. Nes, in Proc. 16th Riso Int. Symp, Denmark, edited by N. Hansen et al. (Riso National Laboratory, 1995), p. 261.

  47. N. C. Krieger Lassen, in Proc. 16th Riso Int. Symp, Denmark, edited by Hansen et al. (Riso National Laboratory, 1995), p. 405.

  48. R. A. Schwarzer, Ultramicroscopy 67 (1997) 19.

    Google Scholar 

  49. Q. Liu, ibid. 60 (1995) 81.

    Google Scholar 

  50. F. J. Humphreys and M. Hatherly, “Recrystallization and Related Annealing Phenomena” (Pergamon, Oxford, 1995).

    Google Scholar 

  51. H. J. Bunge, “Texture Analysis in Materials Science” (Butterworth, London, 1992).

    Google Scholar 

  52. R. W. Cahn, in “Processing of Metals and Alloys,” edited by Cahn (VCH, Heinheim, 1991), p. 429.

    Google Scholar 

  53. W. B. Hutchinson, E. Lindh and P. S. Bate, in Proc. 12th Int Conf. on Texture, edited by J. Szpunar (NRC Press, Ottawa, 1999), p. 34.

    Google Scholar 

  54. A. W. Bowen, Mater.Sci.Tech. 6 (1990) 1058.

    Google Scholar 

  55. G. J. Baczynski, R. Guzzo, M. D. Ball and D. J. Lloyd, Acta Mater. 48 (2000) 3361.

    Google Scholar 

  56. P. S. Lee, A. D. Rollett and B. L. Adams, in Proc. ICOTOM12, 1999, p. 21.

  57. Y. Huang, F. J. Humphreys and M. Ferry, Acta Mater. 48 (2000) 2543.

    Google Scholar 

  58. J. Hansen, J. Pospiech and K. Lucke, “Tables for Texture Analysis of Cubic Crystals” Springer-Verlag, Berlin (1978).

    Google Scholar 

  59. F. C. Frank, Metall.Trans. 19A (1988) 403.

    Google Scholar 

  60. W. B. Hutchinson, L. Ryde, P. S. Bate and B. Bacroix, Scripta Mater 35 (1996) 579.

    Google Scholar 

  61. V. Randle, “The Measurement of Grain Boundary Geometry” (Inst. Phys. Publishing, Bristol, 1993).

    Google Scholar 

  62. B. Adams, D. Kinderlehrer, W. W. Mullins, A. D. Rollett and S. Taasan, Scripta Mater. 38 (1998) 531.

    Google Scholar 

  63. C.-C. Yang, A. D. Rollett and W. W. Mullins, in Proc. 21st Riso Int. Symp., Denmark, edited by N. Hansen et al. (Riso National Laboratory, 2000), p. 659.

  64. V. Randle, M. Caul and J. Fiedler, Micros.Microanal. 3 (1997) 224.

    Google Scholar 

  65. V. Randle and C. Hoile, in Proc. Int. conf. on Texture and Anisotropy of Polycrystals, edited by R. Schwarzer (Trans Tech Publishing, Switzerland, 1998), p. 183.

    Google Scholar 

  66. V. M. Segal, Mater.Sci.Eng. A197 (1995) 157.

    Google Scholar 

  67. K. Nakashima, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater. 46 (1998) 1589.

    Google Scholar 

  68. C. Harris, P. B. Prangnell and X. Duan, in Proc. 6th Int. Conf on aluminium alloys (ICAA6), edited by T. Sato et al. (Toyohashi, Japan) 1 (1998) 583.

    Google Scholar 

  69. F. J. Humphreys, P. B. Prangnell, J. R. Bowen, A. Gholinia and C. Harris, Phil.Trans.Royal Society A357 (1999) 1663.

    Google Scholar 

  70. A. Gholinia, P. B. Prangnell and M. V. Markuchev, Acta Mater. 48 (2000) 1115.

    Google Scholar 

  71. D. G. Brandon, B. Ralph, S. Ranganathan and M. S. Wald, Acta Metall. 12 (1964) 813.

    Google Scholar 

  72. H. Mykura, in “Grain Boundary Structure and Kinetics,” edited by Balluffi (ASM, Ohio, 1980), 445.

    Google Scholar 

  73. D. G. Brandon, Acta Metall. 14 (1966) 1479.

    Google Scholar 

  74. G. Palumbo and K. T. Aust, in “Materials Interfaces,” edited by Wolf and Yip (Chapman and Hall, London, 1992), p. 190.

    Google Scholar 

  75. T. Watanabe, in Proc. 4th Int Conference on Recrystallization, edited by T. Sakai and H. Suzuki, Japanese Institute of Metals, Tsukuba, Japan (1999), p. 99.

    Google Scholar 

  76. V. Randle, “The Role of the Coincidence Site Lattice in Grain Boundary Engineering” (Inst. of Materials, London, 1996).

    Google Scholar 

  77. E. M. Lehockey and G. Palumbo, Mater.Sci.Eng. A237 168.

  78. M. G. Ardakani, N. D'souza, B. Shollock and M. Mclean, Met.Trans A 31A (2000) 2887.

    Google Scholar 

  79. Y. Pan and B. L. Adams, Scripta Metall. 30 (1994) 1055.

    Google Scholar 

  80. P. L. Orsetti Rossi and C. M. Sellars, Acta Mater. 45 (1997) 137.

    Google Scholar 

  81. E. Lindh, B. Hutchinson and P. Bate, in Proc. 10th Int Conf of Textures, 1995. Clausthal-Zellerfeld, Germany, edited by H. J. Bunge (Trans Tech Publications, Switzerland, 1993) p. 1917.

    Google Scholar 

  82. O. Engler, in Proc. 19th Riso Int. Symp. Denmark, edited by J. Carstersen et al. (Riso National Laboratory, 1998), p. 253.

  83. M. P. Black and R. L. Higginson, Scripta Mater. 41 (1999) 125.

    Google Scholar 

  84. S. I. Wright, in Proc. 12th Int. Conf. on Texture, edited by J. Szpunar (NRC Press, Ottawa, 1999), p. 104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphreys, F.J. Review Grain and subgrain characterisation by electron backscatter diffraction. Journal of Materials Science 36, 3833–3854 (2001). https://doi.org/10.1023/A:1017973432592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017973432592

Keywords

Navigation