Skip to main content
Log in

Thermal expansion behavior of aluminum alloys reinforced with alumina planar random short fibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal expansion behavior of two aluminum alloys (Al-4%Cu and Al-12%Si) reinforced with alumina planar random short fibers has been studied, both experimentally and theoretically. The metal matrix composites (MMCs) were manufactured by pressure infiltration of molten metal into short fiber preforms with a planar random distribution of fibers. Dilatometric testing was used to investigate the influence of fiber volume fraction and architecture, and the effects of thermal cycling between 25 °C to ∼560 °C. Thermal expansion measurements showed that, by increasing the fiber content in the composites, both the thermal strains and the effective coefficient of thermal expansion (CTE) were reduced in the whole temperature range. Furthermore, the thermal strains of MMCs increased almost linearly up to a critical temperature, T cr, where the metallic matrix began to yield macroscopically due to internal thermal stresses. For temperatures higher than T cr the thermal strains of MMCs showed a marked hysteresis during heating/cooling cycles due to the elasto-plastic response of the metallic matrix. In this temperature range, the thermal expansion curves deviated appreciably from linearity and the planar (in the plane of fibers) and transverse (normal to the plane of fibers) responses were very different: while the planar CTE was strongly reduced, the transverse CTE increased sharply with temperature, being even larger than the CTE of the unreinforced alloy. Thermal cycling produced a net dimensional change of composites during the first 2-3 cycles but, on the subsequent cycles, the permanent deformation disappeared almost completely and the successive thermal expansion curves were identical. Experimental results were compared to the theoretical predictions of an analytical model based on the Eshelby's equivalent inclusion method, and an excellent agreement was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh, A. Mortensen and A. Needleman, in “Fundamentals of Metal Matrix Composites” (Butterworth-Heinemann, Boston, 1993) p. 297.

    Google Scholar 

  2. T. Klimowicz, Journal of Metals 46 (1994) 49.

    Google Scholar 

  3. M. K. Premkumar, W. H. Hunt and R. R. Sawtell, ibid. 44 (1992) 24.

    Google Scholar 

  4. C. Zweben, ibid. 50 (1998) 47.

    Google Scholar 

  5. S. Suresh, A. Mortensen and A. Needleman, in “Fundamentals of Metal Matrix Composites” (Butterworth-Heinemann, Boston, 1993) p. 3.

    Google Scholar 

  6. T. W. Clyne, M. G. Bader, G. R. Cappleman and P. A. Hubert, J. Mater. Sci. 20 (1985) 85.

    Google Scholar 

  7. C. S. Liauo and J. C. Huang, Metall. and Materials Trans. 28A (1997) 1859.

    Google Scholar 

  8. A. Garcia-Romero, X. Alberdi, J. Tezanos and M. Anglada, J. Mater. Sci. 30 (1995) 2605.

    Google Scholar 

  9. G. Neite and S. Mielke, Mater. Science and Engineering A148 (1991) 85.

    Google Scholar 

  10. Y. L. Shen, A. Needleman and S. Suresh, Metall. and Materials Transactions 25A (1994) 839.

    Google Scholar 

  11. C. Badini, M. La Vecchia, A. Giurcanu and J. Wenhui, J. Mater. Sci. 32 (1997) 921.

    Google Scholar 

  12. J. C. Le Flour and R. Locicero, Scripta Metall. 21 (1987) 1071.

    Google Scholar 

  13. W. G. Patterson and M. A. Taya, in Proceed. of Intern. Conference on Composite Materials,Vol. 5, edited byW. C. Harrigan Jr. et al. (Trans. Metall. Soc., AIME, 1985) p. 53.

  14. T. W. Clyne and J. F. Mason, Met. Trans. 18A (1987) 1519.

    Google Scholar 

  15. C. Gonzalez Oliver, R. Stuke, D. Serrano, J. Perez i p iÑa and E. Manavella, in Proceed. of CONAMET VIII and ALAMET III Conference, Antofagasta, Chile (1994) paper No 91, p. 1057.

  16. A. L. Kearney, in “ASM Handbook” (formerly Metals Handbook, 10th ed.) (ASM International Committee, 1990) p. 152.

  17. H. J. Boehm, H. P. Degischer, W. Lacom and J. Qu, Composites Engineering 5 (1995) 37.

    Google Scholar 

  18. R. U. Vaidya and K. K. Chawla, Composites Science and Technology 50 (1994) 13.

    Google Scholar 

  19. X. Dumant, F. Fenot and G. Regazzoni, in Proceed. of 9th Riso Conference on Mechanical and Physical Behavior of Metallic and Ceramic Composites, 1988 p. 345.

  20. G. Garmong, Metallurgical Trans. 4 (1974) 2191.

    Google Scholar 

  21. T. W. Clyne and P. J. Withers, in “An Introduction to Metal Matrix Composites” (Cambridge University Press, Cambridge, 1993) p. 145.

    Google Scholar 

  22. B. W. Rosen and Z. Hashin, Int. J. Eng. Science 8 (1970) 157.

    Google Scholar 

  23. G. J. Dvorak, Proc. Royal Soc. London A431 (1990) 89.

    Google Scholar 

  24. J. D. Eshelby, ibid A241 (1957) 376.

    Google Scholar 

  25. T. Mori and K. Tanaka, Acta Metall. 21 (1973) 571.

    Google Scholar 

  26. P. J. Whiters, W. M. Stobbs and O. B. Pedersen, ibid. 37 (1989) 3061.

    Google Scholar 

  27. T. W. Clyne and P. J. Withers, in “An Introduction to Metal Matrix Composites” (Cambridge University Press, Cambridge, 1993) p. 44.

    Google Scholar 

  28. K. Wakashima, M. Otsuka and S. Umekawa, Journal of Composite Materials 8 (1974) 391.

    Google Scholar 

  29. T. J. Warner and W. M. Stobbs, Acta Metall. 37 (1989) 2873.

    Google Scholar 

  30. H. Li, J. B. Li, Z. G. Wang, C. R. Chen and D. Z. Wang, Metall. and Mater. Transactions 29A (1998) 2001.

    Google Scholar 

  31. A. J. Allen, M. A. Bourke, S. Dawes, M. T. Hutchings and P. J. Withers, Acta Metall. Mater. 40 (1992) 2361.

    Google Scholar 

  32. B. Johannesson and S. L. Ogin, ibid. 43 (1995) 4337.

    Google Scholar 

  33. N. Hansen, in “Dispersion Strengthened Aluminum Products” (Riso National Laboratory, Denmark, 1971).

    Google Scholar 

  34. R. J. Arsenault and M. Taya, Acta Metall. 35 (1987) 651.

    Google Scholar 

  35. M. Vogelsang, R. J. Arsenault and R. M. Fisher, Metall. Transactions 17A (1986) 379.

    Google Scholar 

  36. C. Gonzalez Oliver, H. Nassini, G. Urretavizcaya, H. Zolotucho and E. Manavella, in Proceed. of SAM '98-IBEROMET V, Rosario, Argentina, 1998, p. 713.

  37. R. J. Arsenault, L. Wang and C. R. Feng, Acta Metall. Mater. 39 (1991) 47.

    Google Scholar 

  38. H. E. Nassini, unpublished results.

  39. D. Masutti, J. P. Lentz and F. Delannay, J. Mater. Sci. Lett. 9 (1990) 340.

    Google Scholar 

  40. P. J. Withers, D. J. Jensen, H. Lilholt and W. M. Stobbs, in Proceed. of ICCM VI/ECCM2, edited by F. L. Matthews, N. C. Buskell, J. M. Hodgkinson and J. Morton (Elsevier, London, 1987) p. 2255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gonzalez Oliver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassini, H.E., Moreno, M. & Gonzalez Oliver, C. Thermal expansion behavior of aluminum alloys reinforced with alumina planar random short fibers. Journal of Materials Science 36, 2759–2772 (2001). https://doi.org/10.1023/A:1017973132276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017973132276

Keywords

Navigation