Skip to main content
Log in

NMR at 900 MHz

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

The very first high-resolution NMR spectra recorded at 900 MHz in July 2000 have demonstrated the benefits of increased magnetic field strength for studies of large biomolecules such as proteins and nucleic acids. Increased sensitivity and resolution for such molecules can only be observed in experiments that are optimized for transverse relaxation (TROSY). Substantial effects of magnetic alignment can easily be observed not only in paramagnetic proteins, but even in small molecules, such as chloroform. Such effects can be very useful for structural studies of biopolymers. The extreme resolution allows studies of very weak interactions in proteins. For instance, long-range H/D isotope effects are easily observed in H-N correlation experiments. The first systematic studies of relaxation properties of N-15 nuclei have been carried out for proteins at 500, 600, 800, and 900 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Kupce andJ. Boyd, in XIX Intern. Conf. on Magnetic Resonance in Biological Systems, Book of Abstracts, Florence, 2000.

    Google Scholar 

  2. R. Freeman, Spin Choreography, Spectrum, Oxford, 1997.

    Google Scholar 

  3. P. Styles,N. F. Soffe,C. A. Scott,D. A. Cragg,F. Row,D. J. White, andP. C. J. White, J. Magn. Reson., 60, 397 (1984).

    Google Scholar 

  4. W. A. Anderson,W. W. Brey,A. L. Brooke,B. Cole,K. A. Delin,L. F. Fuks,H. D. W. Hill,V. Y. Kotsubo,R. Nast,R. S. Withers, andW. H. Wong, Bull. Magn.Reson., 17, 98 (1995).

    Google Scholar 

  5. G. Wagner, Curr. Opinion Struct. Biol., 3, 748 (1993).

    Google Scholar 

  6. K. H. Gardner andL. E. Kay, in: N. R. Krishna andL. J. Berliner (Eds), Biological Magnetic Resonance, Kluwer Academic, New York, 1998, 16, 27.

    Google Scholar 

  7. M. Goldman, J. Magn. Reson., 60, 437 (1984).

    Google Scholar 

  8. K. Pervusian,R. Riek,G. Wider, andK. Wuethrich, Proc. Natl. Acad. Sci USA, 94, 12366 (1997).

    Google Scholar 

  9. J. H. Prestegard, Nat. Struct. Biol., 5, 517 (1998).

    Google Scholar 

  10. A. S. Morar,D. Kakouras,G. B. Young, andG. J. Pielak, J. Biol. Inorg. Chem., 4, 220 (1999).

    Google Scholar 

  11. J. Boyd andC. Redfield, J. Am. Chem. Soc., 121, 7441 (1999).

    Google Scholar 

  12. N. Tjandra andA. Bax, Science, 278, 1111 (1997).

    Google Scholar 

  13. E. Kupce,H. Matsuo, andG. Wagner, in: N. R. Krishna andL. J. Berliner (Eds) Biological Magnetic Resonance, Kluwer Acad., New York, 1998, 16, 149.

    Google Scholar 

  14. C. W. Vander Kooi,E. Kupce,E. R. P. Zuiderweg, andM. Pellecchia, J. Biomol. NMR, 15, 335 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupce, E. NMR at 900 MHz. Chemistry of Heterocyclic Compounds 37, 1429–1438 (2001). https://doi.org/10.1023/A:1017963504278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017963504278

Navigation