Skip to main content
Log in

Numerical simulation of bubble growth in expanding perlite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aiming to improve the comprehension of the expansion process of perlite, a numerical study has been carried out, concerning the water vapour bubble growth in softened perlite melt. The physical properties of the melt and temperature history during the expansion process are varied, in order to determine the most influencing parameters. Calculated bubble growth results are compared to experimental data obtained in a previous study, and to industrial expansion results. An extensive literature review has been done to determine the physical properties of raw and expanded perlite, as input values to the numerical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. ZÄhringer et al., Chemie der Erde - Geochemistry, accepted for publication.

  2. L. Gibson and M. Ashby, “Cellular solids, structure and properties” (Pergamon Press, 1988).

  3. M. Amon and C. Denson, Polymer Eng. and Science 24(13) (1984) 1026.

    Google Scholar 

  4. A. Arefmanesh and S. Advani, Rheologica Acta 30 (1991) 274.

    Google Scholar 

  5. Idem., Polymer Eng. and Science 35(3) (1995) 252.

    Google Scholar 

  6. A. Arefmanesh, S. Advani and E. Michaelides, ibid. 30(20) (1990) 1330.

    Google Scholar 

  7. M. Shafi, J. Lee and R. Flumerfelt, ibid. 36(14) (1996) 1950.

    Google Scholar 

  8. A. Proussevitch, D. Sahagian and A. Anderson, J. Geophysical Research 98(B12) (1993) 22.

    Google Scholar 

  9. R. Sparks, ibid. 99(B9) (1994) 17.

    Google Scholar 

  10. D. Sahagian, A. Proussevitch and A. Anderson, ibid. 99(B9) (1994) 17.

    Google Scholar 

  11. A. Proussevitch and D. Sahagian, ibid. 101(B8) (1996) 17.

    Google Scholar 

  12. D. Sahagian and A. Proussevitch, J. Volcanology and Geothermal. Research 74 (1996) 19.

    Google Scholar 

  13. R. S. Sparks, ibid. 3 (1978) 1.

    Google Scholar 

  14. C. W. Burnham, Geochim. Cosmochim. Acta. 39 (1975) 1077.

    Google Scholar 

  15. Perlite Institute INC., Perlite Design Manual, New York.

  16. Roskill Information Services Limited, Perlite (1977).

  17. “Ullmann's Encyclopedia of Industrial Chemistry, ” Vol. A23 (VCH).

  18. T. Murase and A. McBirney, Geol. Soc. of Am. Bulletin 84 (1973) 3563.

    Google Scholar 

  19. A. McBirney and T. Murase, Ann. Rev. Earth Planet. Science 12 (1984) 337.

    Google Scholar 

  20. I. Friedman, W. Long and R. Smith, Journal of Geophysical Research 68(24) (1963) 6523.

    Google Scholar 

  21. K. Z Ähringer, PhD Thesis, Ecole Centrale Paris (1998).

  22. H. Scholze, “Glass: nature, structure, and properties” (Springer Verlag, New York, 1991).

    Google Scholar 

  23. Y. Bottinga and D. Weill, Am. Jour. Scie. 272 (1972) 438.

    Google Scholar 

  24. H. Shaw, ibid. 272 (1972) 870.

    Google Scholar 

  25. K.-U. Hess and D. Dingwell, American Mineralogist 81 (1996) 1297.

    Google Scholar 

  26. T. Murase and A. McBirney, Science 167 (1970) 1491.

    Google Scholar 

  27. R. Stevenson, N. Bagdassarov and C. Romano, Earth and Planetary Science Letters 146 (1997) 555.

    Google Scholar 

  28. N. Bagdassarov and D. Dingwell, J. Volcanology and Geothermal Research 60 (1994) 179.

    Google Scholar 

  29. Y. S. Touloukian (Ed.), “Thermophysical Properties of Matter” (IFI-Plenum, New-York, 1970).

    Google Scholar 

  30. E. King, S. Todd and K. Kelley, Bureau of Mines Report, R.I. 4394 (1948).

  31. C. Bacon, American Journal of Science 277 (1977) 109.

    Google Scholar 

  32. R. Marshall, Geological Society of America Bulletin 72 (1961) 1493.

    Google Scholar 

  33. A. Moulson and J. Roberts, Trans. Brit. Ceram. Soc. 59 (1960) 388.

    Google Scholar 

  34. Y. Zhang, E. Stolper and G. Wasserburg, Geochimica et Cosmochimica Acta 55 (1991) 441.

    Google Scholar 

  35. E. Boulos and N. Kreidl, Jour. Canadian Ceramic Society 41 (1972) 83.

    Google Scholar 

  36. I. Friedman, R. Smith and W. Long, Geological Society of America Bulletin 77 (1966) 323.

    Google Scholar 

  37. R. Lee, Physics and Chemistry of Glasses 5(2) (1964) 35.

    Google Scholar 

  38. J. Karsten, J. Holloway and J. Delaney, Earth and Planetary Science Letters 95 (1982) 420.

    Google Scholar 

  39. K. ZÄhringer, A. Klipfel, J.-P. Martin, J.-P. Petit and M. Founti, “Experimental and computational investigation of vertical perlite expansion furnaces, ” 4th European Conference on Industrial Furnaces and Boilers, Porto, April 1997.

  40. A. Klipfel, K. ZÄhringer, M. Founti, J.-P. Martin and J.-P. Petit, “Numerical simulation and experimental validation of the turbulent combustion and perlite expansion processes in an industrial perlite expansion furnace, ” 11th Symposium on Turbulent Shear Flows, Grenoble, France, Sept. 1997.

  41. K. ZÄhringer, J.-P. Petit, J.-P. Martin, A. Klipfel and M. Founti, “Etude expérimentale et modélisation numérique d'un four d'expansion pour des matériaux isolants d'origine minérale, ” 6e Congrès Français de Génie des Procédés, Paris, Sept. 1997.

  42. N. Bagdassarov, F. Ritter and Y. Yanev, Glass Science and Technology 72(9) (1999) 277.

    Google Scholar 

  43. S. Meriani and F. Fontanive, Materials Chemistry 1 (1976) 347.

    Google Scholar 

  44. A. Boccaccini, K. Kim and G. Ondracek, Mat.-wiss. und Werkstofftechnik 26 (1995) 263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zähringer, K., Martin, JP. & Petit, JP. Numerical simulation of bubble growth in expanding perlite. Journal of Materials Science 36, 2691–2705 (2001). https://doi.org/10.1023/A:1017960729550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017960729550

Keywords

Navigation