Skip to main content
Log in

Corrosion behaviour of some stainless steel alloys in molten alkali carbonates (I)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work it is aimed to study the corrosion behaviour of two types of stainless steel alloys (one ferritic and two austenitic) in molten Li2CO3- Na2CO3- K2CO3 mixture. This mixture is of interest in corrosion studies because of its low melting point (397°C) and good electrical properties. In this investigation the following techniques of measurements are used: (i) open circuit-potential, (ii) galvanic current, (iii) impedance, (iv) atomic absorption spectroscopy for the determination of the amount of metals dissolved in the melt (v) corrosion tests, carried out on the oxide scales formed during the oxidation of stainless steel alloys in carbonate melt. In this melt the electrode Ag/AgCl was used as a reference electrode. In molten carbonates, the oxide ions originate by self-dissociation according to the equilibrium CO3 2− ↔ CO2 + O2−. The oxide ions, O2−, and carbonate ions, CO3 2−, play an important role in the oxidation process of these alloys and their passivation in the carbonate melt. As previously mentioned in references it can be assumed that the oxide scales formed on the alloy surface consist mainly of LiCrO2 and LiFeO2. The cathodic path of the corrosion process may be the reduction of CO2 and/or CO3 2−. The resistance of alloys against corrosion in melt increases with the increase of temperature. This may be due to the increase of concentration of O2− and CO2, enhancing both the anodic and cathodic reactions. The activation energy was calculated and found to be 91.496, 23.412 and 37.956 kJ/mol for the alloys 1, 2 and 3 respectively. The above mentioned techniques of measurements showed that the oxide scales of the austenitic stainless steel alloys (2, 3) are more passive and protective than of ferritic stainless steel alloy (1). This means that the resistance against corrosion, in the carbonate melts, of austenitic stainless steel alloys is higher than that of ferritic one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. King, Jr., Final Report, NASA CR, 134599, FCR-0237 (1977).

  2. Quarterly Status Report for period Jan. 1–March 31, 1977, contract. No.31–109–38–3952, Institute of Gas technology, Chicago, Ill.

  3. R. B. Swaroop, J. W. Sim and K. Kinoshita, J. Electrochem. Soc. 125(11) (1978) 1799.

    Google Scholar 

  4. R. A. Donado, L. G. Marianowski, H. C. Maru and J. R. Selman, ibid. 131(11) (1984) 2535.

    Google Scholar 

  5. Idem., ibid. 131(11) (1984) 2541.

    Google Scholar 

  6. O. P. Penyagina, I. N. Ozeryanaya, N. D. Shamanova and B. B. Antonov, Tr. Inst. Electrochim., Ural Nauchn. Tsetr, Akad. Nauk SSSR 26 (1978) 48.

    Google Scholar 

  7. R. T. Coyle, T. M. Thomas and G. Y. Lai, in High Temp. Corros. Energy Syst. Proc. Symp. 672, 1984, edited by M. F. Rothman (Metall. Soc. AIME. Werrendal, PA 1985).

    Google Scholar 

  8. K. Nakagawa, T. Isozaki, S. Kihara and B. Gijustu, 36(7) (1987) 438.

  9. H. Kiyoshi, Y. Takatoshi, Y. Takehiko, F. Yutaka and O. Keizou, Zairyo to Kankyo 40(2) (1991) 130.

    Google Scholar 

  10. N. Tatsuo, Y. Kohichi and U. Isamu, in Proc. Electrochem. Soc. 1993, 93 (Proceedings of the Third International Symposium on Carbonate Fuel Cell Technology, 1993, p. 264).

  11. H. Yokokawa, N. Sakai, T. Kawada and M. Dokiya, J. Electrochem. Soc. 140(12) (1993) 3565.

    Google Scholar 

  12. J. P. T. Vossen, L. Plomp, J. H. W. De Wit and G. Rietveld, ibid. 142(10) (1995) 3327.

    Google Scholar 

  13. C. G. Lee, H. Nakano, T. Nishina, I. Uchida and S. Kuroe, ibid. 145(8) (1998) 2747.

    Google Scholar 

  14. S. Sendroff and A. Brenner, ibid. 101 (1954) 31.

    Google Scholar 

  15. J. O. M. Bckris, G. J. Hills, D. Inman and L. Young, J. Sci. Inster. 33 (1956) 438.

    Google Scholar 

  16. S. N. Flengas and E. K. Rideal, Proc. Roy. Soc. A233 (1956) 443.

    Google Scholar 

  17. S. N. Flengas and T. R. Ingraham, Canad. J. Chem. 35 (1957) 1139.

    Google Scholar 

  18. J. P. T. Vossen, A. H. H. Janssen and J. H. W. De Wit. J. Electrochem. Soc. 143(1) (1996) 58.

    Google Scholar 

  19. J. P. T. Vossen, R. C. Makkus and J. H. W. De Wit, ibid. 143(1) (1996) 66.

    Google Scholar 

  20. M. D. Ingram, B. Baron and J. Janz, Electrochim. Acta 11 (1966) 1629.

    Google Scholar 

  21. L. Young, “Anodic Oxidation Films” (Academic Press, London, New York, 1961) p. 11257.

    Google Scholar 

  22. Z. Szlarska-Smialowska and R. W. Steehle, J. Electrochem. Soc. 12 (1974) 1393.

    Google Scholar 

  23. A. M. Bekheet, M. M. Hefny, A. A. Mazhar and M. S. El-Basiouny, Ann. Chem. (Rome) 73 (1983) 63.

    Google Scholar 

  24. M. S. El-Basiouny, A. M. El-Kot and M. M. Hefny, Corrosion 36 (1980) 244.

    Google Scholar 

  25. U. R. Evans “The Corrosion and Oxidation of Metals” (Edward Arnold, London, England, 1960) p. 898.

    Google Scholar 

  26. T. Bunzo and O. Takeo, Hyomen Gijutu 43(3) (1992) 233.

    Google Scholar 

  27. Q. W. Walter, Corros. Sc. 26(9) (1986) 681.

    Google Scholar 

  28. M. Azzi and J. J. Rameau, ibid. 30 (1990) 439.

    Google Scholar 

  29. J. P. T. Vossen, P. C. H. Ament and J. H. W. De Wit, J. Electrochem. Soc. 143(7) (1996) 2272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salih, S.A., El-Masri, A.N. & Baraka, A.M. Corrosion behaviour of some stainless steel alloys in molten alkali carbonates (I). Journal of Materials Science 36, 2547–2555 (2001). https://doi.org/10.1023/A:1017954720772

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017954720772

Keywords

Navigation