Skip to main content
Log in

The Ocular Lens Epithelium

  • Published:
Bioscience Reports

Abstract

An adult lens contains two easily discernible, morphologically distinct compartments, the epithelium and the fiber-cell mass. The fiber-cell mass provides the lens with its functional phenotype, transparency. Metabolically, in comparison to the fiber cells the epithelium is the more active compartment of the ocular lens. For the purposes of this review we will only discuss the surface epithelium that covers the anterior face of the adult ocular lens. This single layer of cells, in addition to acting as a metabolic engine that sustains the physiological health of this tissue, also works as a source of stem cells, providing precursor cells, which through molecular and morphological differentiation give rise to fiber cells. Morphological simplicity, defined developmental history and easy access to the experimenter make this epithelium a choice starting material for investigations that seek to address universal questions of cell growth, development, epithelial function, cancer and aging. There are two important aspects of the lens epithelium that make it highly relevant to the modern biologist. Firstly, there are no known clinically recognizable cancers of the ocular lens. Considering that most of the known malignancies are epithelial in origin this observation is more than an academic curiosity. The lack of vasculature in the lens may explain the absence of tumors in this tissue, but this provides only a teleological basis to a very important question for which the answers must reside in the molecular make-up and physiology of the lens epithelial cells. Secondly, lens epithelium as a morphological entity in the human lens is first recognizable in the 5th–6th week of gestation. It stays in this morphological state as the anterior epithelium of the lens for the rest of the life, making it an attractive paradigm for the study of the effects of aging on epithelial function. What follows is a brief overview of the present status and lacunae in our understanding of the biology of the lens epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Albert, D. M., Rabson, A. S., Grimes, P. A., and von Sallmann, L. (1969) Neoplastic transformation in vitro of hamster lens epithelium by Simian Virus 40, Science 164: 1077–1078.

    PubMed  Google Scholar 

  • Andersson, M., Sjostrand, J., and Karlsson, J. (1998) Proteolytic cleavage of N-Succ-Leu-Leu-Val-Tyr-AMC by the proteosome in lens epithelium from clear and cataractous human lens. Exp. Eye Res. 67: 231–236.

    PubMed  Google Scholar 

  • Andley, U. P., Rhim, J. S., Chylack, L. T., and Fleming, T. P. (1994) Propagation and immortalization of human lens epithelial cells in culture. Invest. Ophthalmol. and Vis. Sci. 35: 3094–3102.

    Google Scholar 

  • Andley, U. P., Song, Z., Wawrousek, E. F., and Bassnett, S. (1998) The molecular chaperone ?A-crystallin enhances lens epithelial cell growth and resistance to UVA stress. J. Biol. Chem. 273: 31252–31261.

    PubMed  Google Scholar 

  • Appleby, D. W. and Modak, S. P. (1977) DNA degradation in terminally differentiating lens fiber cells from chick embryos. Proc. Natl. Acad. Sci. U.S.A. 74: 5579–5583.

    PubMed  Google Scholar 

  • Arita, T., Lin, L. R., Susan, S. R., and Reddy, V. N. (1990) Enhancement of differentiation of human lens epithelium in tissue culture by changes in cell-substrate adhesion. Invest. Ophthalmol. and Vis. Sci. 31: 2395–2404.

    Google Scholar 

  • Arita, T., Murata, Y., Lin, L. R., Tsuji, T., and Reddy, V. N. (1993) Synthesis of lens capsule in longterm culture of human lens epithelial cells. Invest. Ophthalmol. and Vis. Sci. 34: 355–362.

    Google Scholar 

  • Balaram, M., Tung, W. H., Kuszak, J. R., Ayaki, M., Shinohara, T., and Chylack, Jr., L. T. (2000) Noncontact specular microscopy of human lens epithelium. Invest. Ophthalmol. and Vis. Sci. 41: 474–481.

    Google Scholar 

  • Bassnett, S., Kuszak, J. R., Reinisch, L., Brown, H. G., and Beebe, D. C. (1994) Intercellular communication between epithelial and fiber cells of the eye lens. J. Cell Sci. 107: 799–811.

    PubMed  Google Scholar 

  • Beebe, D. and Piatigorsky, J. (1977) The control of ?-crystallin gene expression during lens cell development: dissociation of cell elongation, cell division, ?-crystallin synthesis and ?-crystallin mRNA accumulation. Dev. Biol. 59: 174–182.

    PubMed  Google Scholar 

  • Becker, B. and Cotlier, E. (1962) Distribution of rubidium-86 accumulated in the rabbit lens. Invest. Ophthalmol. and Vis. Sci. 1: 642–645.

    Google Scholar 

  • Bergner, A. and Glaesser, D. (1979) Demonstration of a magnesium-and calcium-dependent ATPase on the outer surface of bovine lens epithelial cells. Ophthalmic Res. 11: 322–323.

    Google Scholar 

  • Bloemendal, H. et al. (1980) SV40-transformed hamster lens epithelial cells: A novel system for the isolation of cytoskeletal messenger RNAs and their translation products. Exp. Eye Res. 31: 513–525.

    PubMed  Google Scholar 

  • Bloemendal, H., Enzlin, J. H., Van Rijk, A. A., and Jansen, H. J. (1997) Biochemical differences between three subcell-lines derived from SV40-transformed hamster lens cells. Exp. Eye Res. 64: 1037–1041.

    PubMed  Google Scholar 

  • Bloemendal, H. (1991) Disorganization of membranes and abnormal intermediate filament assembly lead to cataract. Invest. Ophthalmol. and Vis. Sci. 32: 445–455.

    Google Scholar 

  • Bodnar, A. G. et al. (1998) Extensions of life span by introduction of telomerase into normal human cells. Science 279: 349–352.

    Article  PubMed  Google Scholar 

  • Brochman, D., Delamere, N. A., and Paterson, C. A. (1989) Ca2C-ATPase activity in the human lens. Curr. Eye Res. 8: 1049–1054.

    PubMed  Google Scholar 

  • Brenner, W. and Grabner, G. (1982) Unscheduled DNA repair in human lens epithelium following in vivo and in vitro UV irradiation. Ophthalmic Res. 14: 160–167.

    PubMed  Google Scholar 

  • Brown, H. G., Passas, G. D., Ireland, M. E., and Kuszak, J. R. (1990) Ultrastructural, biochemical and immunologic evidence of receptor-mediated endocytosis in the crystalline lens. Invest. Ophthalmol. and Vis. Sci. 31: 2579–2592.

    Google Scholar 

  • Brown, N. A. P. and Bron, A. J. (1987) An estimate of the human cell size in vivo. Exp. Eye Res. 44: 899–906.

    PubMed  Google Scholar 

  • Campisi, J. (1999) Replicative senescence and immortalization. In: The Molecular Basis of Cell Cycle and Growth Control ( Stein, G. S., Baserga, R., Giordano, A., and Denhardt, D. T., eds.), New York, Wiley-Liss, Inc, pp. 348–373.

    Google Scholar 

  • Chandy, K. G. and Gutman, G. A. (1995) Voltage-gated potassium channel genes. In: Ligand and Voltage-gated Ion Channels ( Norh, N. A., ed.), CRC, Boca Raton, FL, pp. 1–71.

    Google Scholar 

  • Cheng, Q., Lichtstein, D., Russel, P., and Zigle, S. (2000) Use of lipophilic cation to monitor electrical membrane potential in the intact rat lens. Invest. Ophthalmol. and Vis. Sci. 41: 482–487.

    Google Scholar 

  • Chylack, L. T. (1971) Control of glycolysis in the lens. Exp. Eye Res. 11: 280–293.

    PubMed  Google Scholar 

  • Colitz, C. M. H., Davidson, M. G., and McGahan, M. C. (1999) Telomerase activity in lens epithelial cells of normal and cataractous lenses. Exp. Eye Res. 69: 641–649.

    PubMed  Google Scholar 

  • Colitz, C. M., Malarkey, D., Dykstra, M. J., McGahan, M. C., and Davidson, M. G. (2000) Histologic and immunohistochemical characterization of lens capsular plaques in dogs with cataracts. Am. J. Vet. Res. 61: 139–143.

    PubMed  Google Scholar 

  • Collison, D. J., Coleman, R. A., James, R. S., Carey, J., and Duncan, G. (2000) Characterization of Muscarinic receptors in human lens cells by pharmacologic and molecular techniques. Invest. Ophthalmol. and Vis. Sci. 41: 2633–2641.

    Google Scholar 

  • Coulombre, J. L. and Coulombre, A. J. (1963) Lens development: fiber elongation and lens orientation. Science 142: 1489–1490.

    PubMed  Google Scholar 

  • Courtois, Y., Simonneau, L., Tassin, J., Laurent, M. V., and Malaise, E. (1978) Spontaneous transformation of bovine lens epithelial cells. Differentiation 10: 23–30.

    PubMed  Google Scholar 

  • Davidson, M. G., Harned, J., Grimes, A. M., Duncan, G., Wirmstone, I. M., and McGahan, M. C. (1998) Transferrin in after-cataract and as a survival factor for lens epithelium. Exp. Eye Res. 66: 207–215.

    PubMed  Google Scholar 

  • Dahm, R., Marle, J. V., Prescott, A. R., and Quinlan, R. A. (1999) Gap junctions containing ?8-connexin (MP70) in the adult mammalian lens epithelium suggests a reevaluation of its role in the lens. Exp. Eye Res. 69: 45–56.

    PubMed  Google Scholar 

  • Dillon, J. (1991) The photophysics and photobiology of the eye. J. Photophys. Photobiol. 10: 23–40.

    Google Scholar 

  • Duncan, G. and Jacob, T. J. C. (1984) Influence of external calcium and glucose on internal total and ionized calcium in rat lens. J. Physiol. 357: 485–493.

    PubMed  Google Scholar 

  • Egan, C. A., Savre-Train, I., Shay, J. W., Wilson, S. E., and Bourne, W. M. (1998) Analysis of telomere lengths in human corneal endothelial cells from donors of different ages. Invest. Ophthalmol. and Vis. Sci. 39: 648–653.

    Google Scholar 

  • Eguchi, G. and Kodama, R. (1979) A study of human senile cataract: growth and differentiation of lens epithelial cell in in vitro cell culture. Ophthalmic Res. 11: 308–315.

    Google Scholar 

  • Fagerholm, P. P. and Philpsin, B. T. (1981) Human lens epithelium in normal and cataractous lenses. Invest. Ophthalmol. and Vis. Sci. 21: 408–414.

    Google Scholar 

  • Ferber, D. (1999) Immortalized cells seem cancer-free so far. Science 283: 154–155.

    PubMed  Google Scholar 

  • Fischbarg, J. et al. (1999) Transport of fluid by lens epithelium. Am. J. Physiol. 276: C548–557.

    PubMed  Google Scholar 

  • Francois, J. and Rabaey, M. (1951) Examination of the lens by phase-contrast microscopy. Br. J. Ophthalmol. 35: 352–355.

    PubMed  Google Scholar 

  • Fridovich, I. (1986) Biological effects of superoxide radical. Arch. Biochem. Biophys. 247: 1–11.

    PubMed  Google Scholar 

  • Garcia-Porrero, J. A., Colvee, E., and Ojeda, J. L. (1984) The mechanism of cell death and phagocytosis in the early chick lens morphogenesis: a scanning electron microscopy and cytochemical approach. Anat. Rec. 208: 123–136.

    PubMed  Google Scholar 

  • Garner, W., Garner, M., and Spector, A. (1983) H?O?-induced uncoupling of bovine lens Na_K ATPase. Proc. Natl. Acad. Sci. U.S.A. 80: 2044–2048.

    PubMed  Google Scholar 

  • Garner, M. and Horwitz, J. (1994) Catalytic subunit isoforms of mammalian lens Na_K ATPase. Curr. Eye Res. 13: 65–77.

    PubMed  Google Scholar 

  • Giblin, F. (2000) Glutathione. A vital lens antioxidant. J. Ocular Pharmacol. Therapeutics 16: 121–135.

    Google Scholar 

  • Giblin, F., McReady, J., Schrimscher, L., and Reddy, V. (1987) Peroxide-induced effects on lens cation transport following inhibition of glutathione reductase activity in vitro. Exp. Eye Res. 45: 77–91.

    PubMed  Google Scholar 

  • Giblin, F. J., Nies, D. E., and Reddy, V. N. (1981) Stimulation of the hexose monophosphate shunt in rabbit lens in response to oxidation of glutathione. Exp. Eye Res. 33: 289–298.

    PubMed  Google Scholar 

  • Giles, K. M. and Harris, J. E. (1959) The accumulation of 14C from uniformly labeled glucose by the normal and diabetic rabbit lens. Am. J. Ophthalmol. 48: 508–551.

    PubMed  Google Scholar 

  • Glaesser, D., Rattke, W., and Iwig, M. (1979) Bovine lens epithelium: A suitable model for studying growth control mechanisms. C6-substituted purines inhibit cell flattening and growth stimulation of G0 cells. Exp. Cell Res. 122: 281–292.

    PubMed  Google Scholar 

  • Glucksmann, A. (1951) Cell death in normal vertebrate ontogeny. Biol. Rev. 26: 59–86.

    Google Scholar 

  • Goodenough, D. A., Dick, J. S. B., and Lyons, J. E. (1980) Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J. Cell Biol. 86: 576–689.

    PubMed  Google Scholar 

  • Goodenough, D. A., Goliger, J. A., and Paul, D. L. (1996) Connexins, connexons and intercellular communication. Ann. Revs. Biochem. 65: 475–502.

    Google Scholar 

  • Goodenough, D. A. (1992) The crystalline lens. A system networked by gap junctional intercellular communication. Semin. Cell Biol. 3: 49–58.

    PubMed  Google Scholar 

  • Gorin, M. B., Yancey, S. B., Cline, J., Revel, J.-P., and Horwitz, J. (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39: 49–59.

    PubMed  Google Scholar 

  • Gyorothy, W. C., Snavely, M. R., and Gerrong, N. D. (1971) Some aspects of transport and digestion in the lens of the normal young adult rat. Exp. Eye Res. 12: 112–119.

    PubMed  Google Scholar 

  • Grainger, R. M. (1992) Embryonic lens induction: shedding light on vertebrate tissue determination. Trends Genet. 8: 349–355.

    PubMed  Google Scholar 

  • Grant, M. E., Kefalides, N. A., and Prockop, D. J. (1972) The biosynthesis of basement membrane collagen in embryonic chick lens. 1. Delay between the synthesis of polypeptide chains and the secretion of collagen by matrix-free cells. J. Biol. Chem. 247: 3539–3544.

    PubMed  Google Scholar 

  • Guggenmoos-Holtzmann, I., Engel, B., Henke, V., and Naumann, G. O. H. (1989) Cell density of human lens epithelium in women higher than in men. Invest. Ophthalmol. and Vis. Sci. 30: 330–332.

    Google Scholar 

  • Hales, A. M., Schultz, M. W., Chamberlain, C. G., and McAvoy, J. W. (1994) TGF-?1 induces lenscells to accumulate a smooth muscle actin, a marker for subcapsular cataracts. Curr. Eye Res. 13: 885–890.

    PubMed  Google Scholar 

  • Hales, A. M., Chamberlain, C. G., Dreber, B., and McAvoy, J. W. (1990) Intravitreal injection of TGF-b induces cataracts in rats. Invest. Ophthalmol. and Vis. Sci. 40: 3231–3236.

    Google Scholar 

  • Hamada, Y. and Okada, T. S. (1978) In vitro differentiation of cells of the lens epithelium of human fetus. Exp. Eye Res. 26: 91–97.

    PubMed  Google Scholar 

  • Hamada, Y., Watanabe, K., Aoyama, H., and Okada, T. S. (1979) Differentiation and dedifferentiation of rat lens epithelial cells in short-and long-term cultures. Dev. Growth Differ. 21: 205–220.

    Google Scholar 

  • Hamann, S. et al. (1998) Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye. Am. J. Physiol. 274: C1332-1345.

    PubMed  Google Scholar 

  • Harding, C. V., Reddan, J. R., Unakar, N. J., and Bagchi, M. (1971) The control of cell division in the ocular lens. Int. Rev. Cytol. 31: 215–230.

    PubMed  Google Scholar 

  • Harding, J. J. and Crabbe, J. C. (1984) The lens: development, proteins, metabolism and cataract. In: The Eye ( Davson, H., ed.), New York, Academic Press, pp. 207–492.

    Google Scholar 

  • Harocopos, G. J., Alvares, K. M., Kolker, A. E., and Beebe, D. C. (1998) Human age-related cataract and lens epithelial cell death. Invest. Ophthalmol. and Vis. Sci. 39: 2696–2706.

    Google Scholar 

  • Harris, J. E. and Becker, B. (1965) Cation transport of the lens. Invest. Ophthalmol. and Vis. Sci. 4: 709–722.

    Google Scholar 

  • Hay, E. D. and Zuk, A. (1995) Transformations between epithelium and mesenchyme: Normal, pathological and experimentally induced. Am. J. Kidney Disease 26: 678–690.

    Google Scholar 

  • Hightower, K. R. and McReady, J. P. (1991) Effect of selenite on epithelium of cultured rabbit lens. Invest. Ophthalmol. and Vis. Sci. 32: 406–409.

    Google Scholar 

  • Hightower, K. R., Reddan, J. R., McReady, J. P., and Dziedzic, D. C. (1994) Lens epithelium: a primary target of UVG irradiation. Exp. Eye Res. 59: 557–564.

    PubMed  Google Scholar 

  • Hightower, K. R. (1995) The role of the lens epithelium in development of UV cataract. Curr. Eye Res. 14: 71–78.

    PubMed  Google Scholar 

  • Huang, L. L., Shang, F., Novell Jr., T. R., and Taylor, A. (1995) Degradation of differential oxidized alpha-crystallins in bovine lens epithelial cells. Exp. Eye Res. 61: 45–54.

    PubMed  Google Scholar 

  • Huxtable, R. J. (1992) Physiological actions of taurine. Physiol. Rev. 72: 101–163.

    PubMed  Google Scholar 

  • Ibaraki, N., Chen, S. C., Lin, L. R., Okamoto, H., Pipas, J. M., and Reddy, V. N. (1998) Human lens epithelial cell line. Exp. Eye Res. 67: 577–585.

    PubMed  Google Scholar 

  • Ibaraki, N., Lin, L. R., and Reddy, V. N. (1996) A study of growth factor receptors in human lens epithelial cells and their relationship to fiber differentiation. Exp. Eye Res. 63: 683–692.

    PubMed  Google Scholar 

  • Inoue, K., Kubota, S., Tsuru, T., Araie, M., and Seyama, Y. (2000) Cholesterol induces apoptosis of corneal endothelial and lens epithelial cells. Invest. Ophthalmol. and Vis. Sci. 41: 991–997.

    Google Scholar 

  • Ireland, M., Lieska, N., and Maisel, H. (1983) Lens actin: purification and localization. Exp. Eye Res. 37: 393–408.

    PubMed  Google Scholar 

  • Ishizaki, Y., Jacobson, M. D., and Raff, M. (1998) A role for caspases in lens filter differentiation. J. Cell Biol. 140: 153–158.

    PubMed  Google Scholar 

  • Ishizaki, Y., Voyvodic, J. T., Burne, J. F., and Raff, M. C. (1993) Control of lens epithelial cell survival. J. Cell Biol. 121: 899–908.

    PubMed  Google Scholar 

  • Jacob, T. J. C. (1983) A direct measurement of intracellular free calcium within the lens. Exp. Eye Res. 36: 451–453.

    PubMed  Google Scholar 

  • Jacob, T. J. C. (1987) Human lens epithelial cells in culture: A quantitative evaluation of growth rate and proliferative capacity. Exp. Eye Res. 45: 93–104.

    PubMed  Google Scholar 

  • Jacob, A. G. and Sater, A. K. (1988) Features of embryonic induction. Development 104: 341–359.

    PubMed  Google Scholar 

  • Jean, D., Ewan, K., and Gruss, P. (1998) Molecular regulators involved in vertebrate eye development. Mechanisms of Deûelopment 76: 3–18.

    Google Scholar 

  • Kannan, R., Yi, J. R., Zlokovic, B. V., and Kaplowitz, N. (1995) Molecular characterization of a reduced glutathione transporter in the lens. Invest. Ophthalmol. and Vis. Sci. 36: 1785–1792.

    Google Scholar 

  • Kantrow, M. et al. (1998) Differential display detects altered gene expression between cataractous and normal human lenses. Invest. Ophthalmol. and Vis. Sci. 39: 2344–2354.

    Google Scholar 

  • Karim, A. J. A., Jacob, T. J., and Thompson, G. M. (1987) Cell density, morphology and mitotic index in normal and cataractous lenses. Exp. Eye Res. 45: 865–874.

    PubMed  Google Scholar 

  • Kern, H. L. and Ho, C. K. (1973a) Localization and specificity of the transport system for sugars in the calf lens. Exp. Eye Res. 15: 751–765.

    PubMed  Google Scholar 

  • Kern, H. L. and Ho, C. K. (1973b) Transport of L-glutamic acid and L-glutamine and their incorporation into lenticular glutathione. Exp. Eye Res. 17: 455–462.

    PubMed  Google Scholar 

  • Kinsey, V. E. and Reddy, D. V. N. (1965) Studies on the crystalline lens. XI. The relative role of the epithelium and capsule in transport. Invest. Ophthalmol. and Vis. Sci. 4: 104–116.

    Google Scholar 

  • Kleiman, N. J., Wang, R., and Spector, A. (1990) Ultraviolet light induced DNA damage and repair in bovine lens epithelial cells. Curr. Eye Res. 9: 1185–1193.

    PubMed  Google Scholar 

  • Kondoh, H., Yasuda, K., and Okada, T. S. (1983) Tissue specific expression of a cloned chick δ-crystallin gene in mouse cells. Nature 301: 440–442.

    PubMed  Google Scholar 

  • Konofsky, K., Naumann, G. O. H., and Guggenmoos-Holtzmann, I. (1987) Cell density and sex chromatin in lens epithelium of human cataracts. Ophthalmol. 94: 875–880.

    Google Scholar 

  • Krausz, E. et al. (1996) Expression of crystallins pax 6, filensin, CP49, MIP and MP20 in lens derived cell lines. Invest. Ophthalmol. and Vis. Sci. 37: 2120–2128.

    Google Scholar 

  • Kuszak, J. R. (1995) The ultrastructure of epithelial and fiber cells in the crystalline lens. Intern. Rev. Cytol. 163: 305–350.

    Google Scholar 

  • Kuszak, J. R. (1997) A re-examination of primate lens epithelial cell size, density and structure as a function of development, growth and age. Nova Acta Leopoldina 57: 45–66.

    Google Scholar 

  • Lang, R. A. (1999) Which factors stimulate lens fiber cell differentiation in ûiûo? Invest. Ophthalmol. Vis. Res. 40: 3075–3078.

    Google Scholar 

  • Lewis, W. H. (1904) Experimental studies on the development of the eye in amphibia. I. Origin of the lens Renu Palustris. Am. J. Anat. 3: 505–536.

    Google Scholar 

  • Li, H. C., Yang, J. M., Jacobson, R., Pasko, D., and Sundin, O. (1994) Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev. Biol. 162: 181–194.

    PubMed  Google Scholar 

  • Li, W. and Spector, A. (1996) Lens epithelial cell apoptosis is an early event in the development of UVBinduced cataract. Free Radical Biol. Med. 20: 301–311.

    Google Scholar 

  • Li, W. C. et al. (1995a) Lens epithelial cell apoptosis appears to be a common cellular basis for noncongenital cataract development in humans and animals. J. Cell Biol. 130: 169–181.

    PubMed  Google Scholar 

  • Li, W. C., Kuszak, J. R., Wang, G. M., Wu, Z. Q., and Spector, A. (1995b) Calcimycin induced lens epithelial cell apoptosis contributes to cataract formation. Exp. Eye Res. 61: 91–98.

    PubMed  Google Scholar 

  • Lieska, N., Krotzer, K., and Yang, H. Y. (1992) A reassessment of protein synthesis by lens nuclear fiber cells. Exp. Eye Res. 54: 807–811.

    PubMed  Google Scholar 

  • Lin, L. R., Reddy, V. N., Giblin, F. J., Kador, P. F., and Kinoshita, J. H. (1990) Polyol accumulation in cultured human lens epithelial cells. Exp. Eye Res. 51: 93–100.

    PubMed  Google Scholar 

  • Lo, W. K. and Zhang, W. (1989) Endocytosis of macromolecules in the lenses of guinea pig and rabbit. Lens Eye Toxicity Res. 6: 603–612.

    Google Scholar 

  • Lucas, V., Bassnet, S., Duncan, G., Stewart, S., and Gorghan, P. C. (1987) Membrane conductance and potassium permeability of the rat lens. Q. J. Exp. Physiol. 72: 81–93.

    PubMed  Google Scholar 

  • Mahon, K. A., Chepelinsky, A. B., Khillan, J. S., Overbeek, P. A., Piatigorsky, J., and Westphal, H. (1987) Oncogenesis of the lens in transgenic mice. Science 235: 1622–1628.

    PubMed  Google Scholar 

  • Marcantonio, J. M., Rakic, J. M., Vrensen, G. F. J. M., and Duncan, G. (2000) Lens cell populations studied in human donor capsular bags with implanted intraocular lenses. Invest. Ophthalmol. and Vis. Sci. 41: 1130–1141.

    Google Scholar 

  • Mathias, R. T., Rae, J. L., and Baldo, G. J. (1997) Physiological properties of the normal lens. Physiol. Rev. 77: 21–50.

    PubMed  Google Scholar 

  • McAvovy, J. W. and Chamberlain, C. G. (1989) Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development 107: 221–228.

    PubMed  Google Scholar 

  • McAvovy, J. W. and Fernon, V. T. (1984) Neutral retains promote cell division and fibre differentiation in lens epithelial explants. Curr. Eye Res. 3: 827–834.

    PubMed  Google Scholar 

  • McAvovy, J. W. and Chamberlain, C. G. (1990) Growth factors in the eye. Progr. Growth Factor Res. 2: 29–43.

    Google Scholar 

  • Menko, S., Philip, N., Veneziale, B., and Walker, J. (1988) Integrins and development: how might these receptors regulate differentiation of the lens. Ann. NY Acad. Sci. 15: 36–41.

    Google Scholar 

  • Merriam, J. C. et al. (2000) An action spectrum for UV-B radiation and the rat lens. Invest. Ophthalmol. and Vis. Sci. 14: 2642–2647.

    Google Scholar 

  • Merriam-Smith, R., Donaldson, P., and Kistler, J. (1999) Differential expression of facilitative glucose transporters GLUT1 and GLUT3 in the lens. Invest. Ophthalmol. and Vis. Sci. 40: 3224–3230.

    Google Scholar 

  • Michael, R., Vrensen, G. F. J. M., van Marle, J., Gan, L., and Soderberg, P. G. (1998) Apoptosis in the rat lens after in ûiûo threshold dose ultraviolet irradiation. Invest. Ophthalmol. and Vis. Sci. 39: 2681–2687.

    Google Scholar 

  • Mikulicih, A. G. and Young, R. W. (1963) Cell proliferation and displacement in the lens epithelium of young rats injected with tritiated thymidine. Invest. Ophthalmol. and Vis. Sci. 2: 344–354.

    Google Scholar 

  • Mosley, A. E., Dean, W. L., and Delamere, N. A. (1996) K-ATPase in rat lens epithelium and fiber cell. Invest. Ophthalmol. and Vis. Sci. 37: 1502–1508.

    Google Scholar 

  • Nagamoto, T., Eguchi, G., and Beebe, D. C. (2000) Alpha-smooth muscle actin expression in cultured lens epithelial cells. Invest. Ophthalmol. and Vis. Sci. 41: 1122–1129.

    Google Scholar 

  • Nagineni, C. N. and Bhat, S. P. (1988) Maintenance of the synthesis of ?B-crystallin and progressive expression of ?Bp-crystallin in human fetal lens epithelial cells in culture. Dev. Biol. 130: 402–405.

    PubMed  Google Scholar 

  • Nagineni, C. N. and Bhat, S. P. (1989a) Human fetal lens epithelial cells in culture: an in vitro model for the study of crystallin expression and lens differentiation. Curr. Eye Res. 8: 285–291.

    PubMed  Google Scholar 

  • Nagineni, C. N. and Bhat, S. P. (1989b) ?B-crystallin is expressed in kidney epithelial cell lines and not in fibroblasts. FEBS Lett. 249: 89–94.

    PubMed  Google Scholar 

  • Nagineni, C. N. and Bhat, S. P. (1992) Lens fiber cell differentiation and expression of crystallins in cocultures of human fetal lens epithelial cells and fibroblasts. Exp. Eye Res. 54: 193–200.

    PubMed  Google Scholar 

  • Okada, T. S., Eguchi, G., and Takeichi, M. (1971) The expression of differentiation of chicken lens epithelium in in vitro cell culture. Dev. Growth Differentiation 13: 323–336.

    Google Scholar 

  • Ogini, H. and Yasuda, K. (1998) Induction of lens differentiation by activation of a ?ZIP transcription factor. L-Maf. Science 280: 115–118.

    PubMed  Google Scholar 

  • Padgoankar, V. A., Giblin, F. J., Fowler, K., Leverenz, V. R., Reddan, J. R., and Dziedzic, D. C. (1997) Heme oxygenase synthesis is induced in cultured lens epithelium by hypobaric oxygen or puromycin. Exp. Eye Res. 65: 435–443.

    PubMed  Google Scholar 

  • Parekh, A. B. and Penner, R. (1997) Store depletion and calcium influx. Physiol. Rev. 77: 901–930.

    PubMed  Google Scholar 

  • Paterson, C. A. (1972) Distribution and movement of ions in the ocular lens. Document. Ophthalmol. 31: 1–28.

    Google Scholar 

  • Perry, M. M., Tassin, J., and Courtois, Y. A. (1979) Comparison of human lens epithelial cells in situ and in vitro in relation to aging: an ultra structural study. Exp. Eye Res. 28: 327–341.

    PubMed  Google Scholar 

  • Piatigorsky, J. (1981) Lens differentiation in vertebrates: A review of cellular and molecular features. Differentiation 19: 134–152.

    PubMed  Google Scholar 

  • Piper, H. M., Spahr, R., Krutzfeldt, A., Siegmund, B., Schwartz, P., and Pau, H. (1990) Changes in the energy metabolism of cultured lens epithelial cells in comparison with the fresh lens. Exp. Eye Res. 51: 131–138.

    PubMed  Google Scholar 

  • Pirie, A. (1965) Glutathione peroxidase in lens and a source of hydrogen peroxide in the aqueous humor. Biochem. J. 96: 244–253.

    PubMed  Google Scholar 

  • Rae, J. L., Bartling, C., Rae, J., and Mathias, R. T. (1996) Dye transfer between cells of the lens. Membrane Biol. 150: 89–103.

    Google Scholar 

  • Rae, J. L. and Shephard, A. R. (2000) Kv3.3 potassium, channels in lens epithelium and corneal endothelium. Exp. Eye Res. 70: 339–348.

    PubMed  Google Scholar 

  • Rae, J. and Shephard, A. R. (1996) Molecular biology and electrophysiology of calcium-activated channels from lens epithelium. Curr. Eye Res. 17: 264–275.

    Google Scholar 

  • Raff, M. C., Barres, B. A., Burne, J. F., Coles, H. S., Ishizaki, Y., and Jacobson, M. D. (1993) Programmed cell death and the control of cell survival: Lessons from the nervous system. Science 262: 695–700.

    PubMed  Google Scholar 

  • Rafferty, N. S., Scholtz, D. I., Goldberg, M., and Lewckyj, M. (1990) Immunocytochemical evidence for an actin-myosin system in the lens epithelial cells. Exp. Eye Res. 51: 591–600.

    PubMed  Google Scholar 

  • Ramamoorthy, S., Del Monte, M. A., Leibach, F. H., and Ganapathy, V. (1994) Molecular identity and calmodulin-mediated regulation of the taurine transporter in a human retinal pigment epithelial cell line. Curr. Eye Res. 13: 523–529.

    PubMed  Google Scholar 

  • Reddan, J. R. et al. (1981) Donor age influences the growth of rabbit lens epithelial cells in vitro. Vision Res. 21: 11–23.

    PubMed  Google Scholar 

  • Reddy, V. N. (2000) A forty-two year voyage through vision research. J. Ocular Pharmacol. Therapeut. 16: 97–107.

    Google Scholar 

  • Reddy, D. V. N., Klethi, J., and Kinsey, V. E. (1966) Studies on the crystalline lens XII. Turnover of glycine and glutamic acid in glutathione and ophthalmic acid in the rabbit. Invest. Ophthalmol. and Vis. Sci. 5: 594–600.

    Google Scholar 

  • Reddy, G. B. and Bhat, K. S. (1998) UV-B irradiation alters the activities and kinetic properties of the enzymes of energy metabolism in rat lens during aging. J. Photochem. Photobiol. B42: 40–46.

    Google Scholar 

  • Reddy, V. N., Giblin, F. J., and Matsuda, H. (1980) Defense systems of the lens against oxidative damage. In: Red Blood Cell and Lens Metabolism ( Srivastava, S., ed.), Elsevier, North Holland, pp. 139–154.

    Google Scholar 

  • Reddy, V. N., Schwass, D., Chakrapani, B., and Lim, C. P. (1976) Biochemical changes associated with the development and reversal of galactose cataracts. Exp. Eye Res. 23: 483–493.

    PubMed  Google Scholar 

  • Ringens, P., Mungyer, G., Jap, P., Ramaekers, F., Hoenders, H., and Bloemendal, H. (1982) Exp. Eye Res. 35: 313–324.

    PubMed  Google Scholar 

  • Robinson, K. R. and Patterson, J. W. (1983) Localization of steady currents in the lens. Curr. Eye Res. 2: 843–847.

    Google Scholar 

  • Robinson Jr., W. G., Holder, N., and Kinoshita, J. H. (1990) Role of lens epithelium in sugar cataract formation. Exp. Eye Res. 50: 641–646.

    PubMed  Google Scholar 

  • Robinson, M. L., Overbeek, P. A., and Verran, D. J. (1995) Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice. Development 121: 505–514.

    PubMed  Google Scholar 

  • Saha, M. S. et al. (1989) Embryonic lens induction: More than meets the optic vesicle. Cell Diff. Dev. 28: 153–171.

    Google Scholar 

  • Sasaki, H., Lin, L. R., Yokoyama, T., Sevilla, M. D., Reddy, V. N., and Giblin, F. J. (1998) TEMPOL protects against lens DNA strand breaks and cataract in the X-rayed rabbit. Invest. Ophthalmol. and Vis. Sci. 39: 544–552.

    Google Scholar 

  • Sawhney, R. S. (1995) Identification of SPARC in the anterior lens capsule and its expression by lens epithelial cells. Exp. Eye Res. 61: 645–648.

    PubMed  Google Scholar 

  • Sax, C. M., Dziedzic, D. C., Piatigorsky, J., and Reddan, J. R. (1995) Analysis of a-crystallin expression in cultured mouse and rabbit lens cells. Exp. Eye Res. 61: 125–127.

    PubMed  Google Scholar 

  • Sax, C. M. and Piatigorsky, J. (1994) Expression of the alpha-crystallin_small heat-shock protein_molecular chaperone genes in the lens and other tissues. Adv. Enzymol. Related Areas of Mol. Biol. 69: 155–201.

    Google Scholar 

  • Shang, F., Gong, X., and Taylor, A. (1997) Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently up regulated. J. Biol. Chem. 272: 23086–23093.

    PubMed  Google Scholar 

  • Shui, Y. B. et al. (2000) Morphological observations on cell death and phagocytosis induced by ultraviolet irradiation in a cultured human lens epithelial cell line. Exp. Eye Res. 71: 609–618.

    PubMed  Google Scholar 

  • Sidjanin, D., Zigman, S., and Reddan, J. (1993) DNA damage and repair in rabbit lens epithelial cells following UVA irradiation. Curr. Eye Res. 12: 773–781.

    PubMed  Google Scholar 

  • Simonneau, L., Herve, B., Jacquemin, E., and Courtois, Y. (1983) State of differentiation of bovine epithelial lens cells in ûitro. Relationship between the variation of the cell shape and the synthesis of crystallins. Cell Differ. 13: 185–190.

    PubMed  Google Scholar 

  • Singh, D. P. et al. (2000) Lens epithelium derived growth factor LEDGF: Effects on growth and survival factor of lens epithelial cell, keratinocytes and fibroblasts. Biochem. Biophys. Res. Commun. 267: 371–381.

    Google Scholar 

  • Spector, A. (1995) Oxidative stress-induced cataract: mechanism of action. FASEB J. 9: 1173–1182.

    PubMed  Google Scholar 

  • Spector, A., Wang, R. R., Ma, W., and Kleiman, N. J. (2000) Development and characterization of and H?O?-resistant immortal lens epithelial cell line. Invest. Ophthalmol. and Vis. Sci. 41: 832–843.

    Google Scholar 

  • Spemann, H. (1901) Uber korrelation in der entwickling des auges. Verh. Anat. Ges. 15: 61–79.

    Google Scholar 

  • Spemann, H. (ed.) (1962) Embryonic Deûelopment and Induction. New York, Hafner Publishing.

    Google Scholar 

  • Srivastava, S. K., Singhal, S. S., Awasthi, S., Pikuka, S., Ansari, N. H., and Awasthi, Y. C. (1996) A glutathione S-transferase isozyme (bGST5.8) involved in the metabolism of 4-hydroxy-2-transnonenal is localized in bovine lens epithelium. Exp. Eye Res. 63: 329–337.

    PubMed  Google Scholar 

  • Starka, L., Hampl, R., Obenberger, J., and Doskocil, M. (1986) The role of corticosteroids in the homeostasis of the eye. J. Steroid Biochem. 24: 199–205.

    PubMed  Google Scholar 

  • Stellar, H. (1995) Mechanisms and genes of cellular suicide. Science 267: 1445–1449.

    PubMed  Google Scholar 

  • Stokes, J. et al. (2000) Distribution of glucocorticoid and mineralcorticoid receptors and 11 β-hydroxysteroid dehydrogenases in human and rat ocular tissues. Invest. Ophthalmol. and Vis. Sci. 41: 1629–1638.

    Google Scholar 

  • Straatsma, B. R., Lightfoot, D. O., Brake, R. M., Horwits, J. (1991) Lens capsule and epithelium in agerelated cataract. Am. J. Ophthalmol. 112: 283–296.

    PubMed  Google Scholar 

  • Struck, H. G., Hieder, C., and Lautenschlager, C. (2000) Veranderungen des linsenepithels bei diabetikern und nichtdiabetikern mit verschiedenen trubungsformen einer altersassoziierten katarakt. Klin. Monatsbl. Augenheilkd 216: 204–209.

    PubMed  Google Scholar 

  • Sun, K. J., Iwata, T., Zigler Jr., J. S., and Carper, D. A. (2000) Differential gene expression in male and female rat lenses undergoing cataract by transforming growth factor-beta (TGF-beta). Exp. Eye Res. 70: 169–181.

    PubMed  Google Scholar 

  • Tassin, J., Malaise, E., and Courtois, Y. (1979) Human lens cells have in ûitro proliferation capacity inversely proportional to the donor age. Exp. Cell Res. 123: 388–392.

    PubMed  Google Scholar 

  • Tung, W., Chylack, L., and Andley, U. (1988) Lens hexokinase deactivation by near-UV irradiation. Curr. Eye Res. 7: 257–263.

    PubMed  Google Scholar 

  • Vasavada, A. R., Cherian, M., Yadav, S., and Rawal, U. M. (1991) Lens epithelial cell density and histomorphological study in cataractous lenses. J. Cataract Refract. Surg. 17: 798–804.

    PubMed  Google Scholar 

  • Van Venrooji, W. J., Groenevald, A. A., Bloemendal, H., and Beneditti, E. L. (1974) Cultured calf lens epithelium. 1. Methods of cultivation and characteristics of the cultures. Exp. Eye Res. 18: 517–526.

    PubMed  Google Scholar 

  • Vaziri, H. et al. (1999) Analysis of genomic integrity and p53-dependent G1 checkpoint in Telomeraseinduced extended-life span human fibroblasts. Mol. Cell Biol. 19: 2373–2379.

    PubMed  Google Scholar 

  • Vaulont, S., Vasseur-Cognet, M., and Kahn, A. (2000) Glucose regulation of gene transcription. J. Biol. Chem. 275: 31555–31558.

    PubMed  Google Scholar 

  • Vermorken, A. J., Groenevald, A. A., Hilderink, J. M. H. C., de Waal, R., and Bloemendal, H. (1977) Dedifferentiation of lens epithelial cells in tissue culture. Mol. Biol. Rep. 3: 371–378.

    PubMed  Google Scholar 

  • Vishwanath, R. I. et al. (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283: 83–867.

    Article  PubMed  Google Scholar 

  • Wen, Y., Li, G. W., Chen, P., Wong, E., and Bekhor, I. (1995) Lens epithelial cell mRNA. II. Expression of a mRNA encoding a lipid-binding protein in rat lens epithelial cells. Gene 158: 269–274.

    PubMed  Google Scholar 

  • Wintour, E. M. (1997) Water channels and urea transporters. Clin. Exp. Pharmacol. Physiol. 24: 1–9.

    PubMed  Google Scholar 

  • Worgul, B. V. et al. (1991) Evidence of genotoxic damage in human cataractous lenses. Mutagenesis 6: 495–499.

    PubMed  Google Scholar 

  • Worgul, B. V., Merriam Jr., G. R., and Medvedovsky, C. (1989) Cortical cataract development-an expression of primary damage to the lens epithelium. Lens Eye Toxic Res. 6: 559–571.

    PubMed  Google Scholar 

  • Wormstone, I. M., Liu, C. S. C., Rakic, J. M., Mercantonio, J. M., Vrensen, G. F. J. M., and Duncan, G. (1997) Human lens epithelial cell proliferation in a protein-free medium. Invest. Ophthalmol. and Vis. Sci. 38: 396–404.

    Google Scholar 

  • Wormstone, I. M., Tamiya, S., Mercantonio, J. M., and Reddan, J. R. (2000) Hepatocyte growth factor function and c-Met expression in human lens epithelial cells. Invest. Ophthalmol. and Vis. Sci. 41: 4216–4222.

    Google Scholar 

  • Wride, M. A. and Saunders, E. J. (1998) Nuclear degeneration in the developing lens and its regulation by TNF-α. Exp. Eye Res. 66: 371–383.

    PubMed  Google Scholar 

  • Yan Q., Clark, J. I., and Sage, E. H. (2000) Expression and characterization of SPARC in human lens and in the aqueous and vitreous humors. Exp. Eye Res. 71: 81–90.

    PubMed  Google Scholar 

  • Zampighi, G. A., Eskandari, S., and Kremen, M. (2000) Epithelial organization of the mammalian lens. Exp. Eye Res. 71: 415–435.

    PubMed  Google Scholar 

  • Zelenka, P. S., Gao, C. Y., Rampalli, A., Arora, J., Chauthaiwale, V., and He, H. Y. (1997) Cell cycle regulation in the lens: Proliferation, quiescence, apoptosis and differentiation. Prog. Ret. Eye Res. 16: 303–322.

    Google Scholar 

  • Zhou, C. and Cammarata, P. R. (1997) Cloning the bovine NaC_myoinositol cotransporter gene and characterization of an osmotic responsive promoter. Exp. Eye Res. 65: 349–363.

    PubMed  Google Scholar 

  • Zigman, S. (2000) Lens UV photobiology. J. Ocular Pharmacol. Therapeutics 16: 161–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhat, S.P. The Ocular Lens Epithelium. Biosci Rep 21, 537–563 (2001). https://doi.org/10.1023/A:1017952128502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017952128502

Navigation