Skip to main content
Log in

Structural changes of tRNA and 5S rRNA induced with magnesium and visualized with synchrotron mediated hydroxyl radical cleavage

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The structure of native yeast tRNAPhe and wheat germ ribosomal 5S RNA induced by different magnesium ion concentrations was studied in solution with a synchrotron mediated hydroxyl radical RNA cleavage reaction. We showed that very small amounts of Mg+2 can induce significant changes in the hydroxyl radical cleavage pattern of tRNAPhe. It also turned out that a reactivity of tRNAPhe towards •OH coincides with the strong metal binding sites. Because of the Mg ions are heavily hydrated one can suggest the strong correlation of the observed nucleosides reactivity in vicinity of Mg2+ binding sites with availability of water molecules as a source of hydroxyl radical. On the other hand the structure of wheat germ 5S rRNA is less sensitive to the hydroxyl radical reaction than tRNAPhe although some changes are visible at 4 mM Mg ions. It is probably due to the lack of strong Mg+2 binding sites in that molecule. The reactivity of nucleotides in loops C and D of 5S rRNA is not effected, what suggests their flexibility or involvement in higher order structure formation. There is different effect of magnesium on tRNA and 5S rRNA folding. We found that nucleotides forming strong binding sites for magnesium are very sensitive to X-ray generated hydroxyl radical and can be mapped with •OH. The results show, that guanine nucleotides are preferentially hydrated. X-ray footprinting mediated hydroxyl radical RNA cleavage is a very powerful method and has been applied to studies of stable RNAs for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lantham JA & Cech TR (1989) Science 245: 276–282

    Google Scholar 

  2. Celander DW & Cech TR (1990) Biochemistry 29: 1355–1361

    Google Scholar 

  3. Celander DW & Cech TR (1991) Science 251: 401–407

    Google Scholar 

  4. Loizos N & Darst SA (1998) Structure 6: 691–695

    Google Scholar 

  5. Balasubramanian B, Pogozelski WK & Tulius TD (1998) Proc. Natl. Acad. Sci. USA 95: 9738–9743

    Google Scholar 

  6. Barciszewska M, Szymański M, Erdmann VA & Barciszewski J (2000) Biomacromolecules 1: 297–302

    Google Scholar 

  7. Barciszewska MZ, Szymański M, Erdmann VA & Barciszewski J (2001) Acta Biochim Polon 48: 191–198

    Google Scholar 

  8. Correll CC, Freeborn B, Moore P. & Steitz TA (1997) Cell 91: 705–712

    Google Scholar 

  9. Ban N, Nissen P, Hansen J, Moore PB & Steitz TA (2000) Science 289: 905–920

    Google Scholar 

  10. Barciszewska M, Erdmann VA & Barciszewski J (1992) Int. J. Biol. Macromol. 14: 41–44

    Google Scholar 

  11. Barciszewska M, Erdmann VA & Barciszewski J (1994) Phytochemistry 37: 113–117

    Google Scholar 

  12. Sclavi B, Sullivan M, Chance MR, Brenowitz M & Woodson SA (1998) Science 279: 1940–1943

    Google Scholar 

  13. Sclavi B, Woodson S, Sullivan M, Chance M & Brenowitz M (1997) J. Mol. Biol. 266: 144–159

    Google Scholar 

  14. Giege R, Frugier M & Rudinger J (1998) Curr. Opinion in Struct. Biol. 8: 286–293

    Google Scholar 

  15. McKay D (1996) RNA 2: 395–403

    Google Scholar 

  16. Murray JB, Terwey DP, Maloney L, Karpeisky A, Usman N, Beigelman L & Scott WG (1998) Cell 92: 665–673

    Google Scholar 

  17. Ferre-D'Amare AR, Zhou K & Doudna JA (1998) Nature 395: 567–574

    Google Scholar 

  18. Petri V. and Brenowitz M. (1997) Curr. Opinion Biotech. 8: 36–44

    Google Scholar 

  19. Chance M, Sclavi B, Woodson SA & Brenowitz M (1997) Structure 5: 865–869

    Google Scholar 

  20. Nazar RN (1991) J. Biol. Chem. 266: 4562–4567

    Google Scholar 

  21. Zhong M & Kallenbach NR (1994) J. Struct. Biomol. Dynamics 11: 901–911

    Google Scholar 

  22. Jovine L, Djordjevic S & Rhodes D (2000) J. Mol. Biol. 301: 401–414

    Google Scholar 

  23. Polacek N & Barta A (1998) RNA 4: 1282–1294

    Google Scholar 

  24. Hermann T & Westhof E (1998) Structure 6: 1303–1314

    Google Scholar 

  25. Serebrov V, Vassilenko K, Kholod N, Gross HJ & Kisselev LL (1998) Nucleic Acids Res. 26: 2723–2728

    Google Scholar 

  26. Kholod NS, Pankova NV, Mayorov SG, Krutilina AI, Shlyapnikov MG, Kisselev & Ksenzenko VN (1997) FEBS Lett. 411: 123–127

    Google Scholar 

  27. Quigley GJ, Teeter MM & Rich A (1978) Proc. Natl. Acad. Sci. USA 75: 64–68

    Google Scholar 

  28. Reid SS & Cowan JA (1990) Biochemistry 29: 6025–6032

    Google Scholar 

  29. Rhodes D (1977) Eur. J. Biochem. 81: 91–101

    Google Scholar 

  30. Dallas A & Moore PB (1997) Structure 5: 1639–1653

    Google Scholar 

  31. Barciszewska M, Huang H., Marshall AG, Erdmann VA & Barciszewski J (1992) J. Biol. Chem. 267: 16691–16695

    Google Scholar 

  32. Nissen P, Hensery J, Ban N, Moore PB & Steitz TA (2000) Science 289: 920–930

    Google Scholar 

  33. Li SJ & Marshall AG (1985) Biochemistry 24: 4017–4052

    Google Scholar 

  34. Barciszewski J, Bratek-Wiewiórowska MD, Górnicki P, Naskret-Barciszewska M, Wiewiórowski M, Zielenkiewicz A & Zielenkiewicz W (1988) Nucleic Acids Res. 16: 685–701

    Google Scholar 

  35. Maruyama S & Sugai S (1980) J. Biochem. 88: 151–158

    Google Scholar 

  36. Kulinski T, Bratek-Wiewiórowska MD, Zielenkiewicz A & Zielenkiewicz W (1997) J. Biomol. Struct. Dynamics 14: 495–507

    Google Scholar 

  37. Shi H & Moore PB (2000) RNA 6: 1091–1105

    Google Scholar 

  38. Yusupov MM, Yusupove GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD & Noller H (2001) Science 292: 883–900

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Barciszewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barciszewska, M.Z., Rapp, G., Betzel, C. et al. Structural changes of tRNA and 5S rRNA induced with magnesium and visualized with synchrotron mediated hydroxyl radical cleavage. Mol Biol Rep 28, 103–110 (2001). https://doi.org/10.1023/A:1017951120531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017951120531

Navigation