Skip to main content
Log in

Hot rolling simulations of austenitic stainless steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dynamic, static and metadynamic recrystallization behavior of austenitic stainless steel during hot rolling was analyzed. In this approach, each of those recrystallization behaviors is described by appropriate kinetics equations. The critical strain for dynamic recrystallization was determined so that a distinction could be made between static and metadynamic recrystallization; then the amounts of strain accumulation compared with the critical strain each pass. The effects of grain size on the fraction recrystallized and of the latter on the flow stress were evaluated for each type recrystallization behavior. In this way, the dependence of the mean flow stress (MFS) on temperature could be analyzed in terms of the extent and nature of the prior or concurrent recrystallization mechanisms. Finally, an example is given of an industrial process in which DRX/MDRX can play an important role. More grain refinement can be achieved by increasing the strain rate, decreasing the interruption time and lowering the temperature of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Sellars and J. A. Whiteman, Mat.Sci. 13 (1979) 187.

    Google Scholar 

  2. B. Dutta and C. M. Sellars, Mater.Sci.Technol. 3 (1987) 197.

    Google Scholar 

  3. C. M. Sellars, in Proc. Int. Conf. on HSLA Steela' 85, edited by J. M. Gray et al. (Am. Soc. Met. Metals Park, USA, 1986), p. 73.

    Google Scholar 

  4. P. D. Hodgson and R. K. Gibbs, ISIJ Int. 33 (1993) 1257.

    Google Scholar 

  5. P. Choquet, P. Fabregure, J. Giusti, B. Chamont, J. N. Pensant and F. Blanchet, in Proc. Int. Symp. Mathematical Modeling of Steel, Hamilton, Canada, edited by S. Yue (Can. Inst. Mining & Metallurgy, 1990), p. 232.

  6. O. Kwon, ISIJ Int. 32 (1992) 350.

    Google Scholar 

  7. E. A. Simielli, S. Yue and J. J. Jonas, Metal.Mater.Trans.A 23A (1992) 597.

    Google Scholar 

  8. J. W. Bowden, F. H. Samuel and J. J. Jonas, ibid. 22A (1991) 2947.

    Google Scholar 

  9. L. N. Pussegoda, S. Yue and J. J. Jonas, ibid. 26A(1) (1995) 181.

    Google Scholar 

  10. T. M. Maccagno and J. J. Jonas, ISIJ Int. 34 (1994) 607.

    Google Scholar 

  11. S. L. Semiatin, G. D. Lahoti and J. J. Jonas, “ASM Metals Handbook,” 9th ed. Vol. 8 (American Soc. Mater., Metals Park, USA, 1985) p. 154.

    Google Scholar 

  12. L. N. Pussegoda, S. Yue and J. J. Jonas, Metall.Trans.A 21A (1990) 153.

    Google Scholar 

  13. C. Roucoules, P. D. Hodgson, S. Yue and J. J. Jonas, ibid. 25A (1994) 389.

    Google Scholar 

  14. Laasraoui and J. J. Jonas, Metall.Trans. 22A (1991) 151.

    Google Scholar 

  15. P. H. Hodgson and R. K. Gibbs, ISIJ Int. 32 (1992) 365.

    Google Scholar 

  16. L. P. Karjalainen, T. M. Maccagno and J. J. Jonas, ibid. 35 (1995) 1523.

    Google Scholar 

  17. S. H. Cho, S. I. Kim and Y. C. Yoo, J.Mater.Sci.Lett. 16 (1997) 1836.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, SH., Yoo, YC. Hot rolling simulations of austenitic stainless steel. Journal of Materials Science 36, 4267–4272 (2001). https://doi.org/10.1023/A:1017949812425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017949812425

Keywords

Navigation