Skip to main content
Log in

Fabrication of in situ TiC reinforced aluminum matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, the room and elevated temperature mechanical behavior of Al/TiC, high-strength Al-Si/TiC and the elevated temperature-resistant Al-Fe(-V-Si)/TiC composites has been evaluated. The microstructural characteristics of ingot metallurgy (IM) or rapid solidification (RS) Al-Si/TiC and Al-Fe(-V-Si)/TiC composites could be thought of as a combination of the related alloy matrix microstructures and the IM or RS Al/TiC composites. The IM Al/TiC and the Al-Si/TiC composites show superior strength and ductility to the relevant aluminum based composites.The RS Al/TiC and the Al-Fe-V-Si/TiC exhibit high Young's moduli and substantial improvements in room and elevated temperature tensile properties compared to those of rapidly solidified alloys and conventional composites.The Young's modulus values of RS Al/TiC and Al-Fe-V-Si/TiC composites are well within Hashin-Shtrikman limits in keeping with the strong interfacial bonding. In the micromechanics approach, the principal strengthening mechanisms for the present dispersed particle-hardened RS in situ Al-TiC composites would include Orowan strengthening, grain-size and substructure strengthening, and solid-solution strengthening. The RS technique was used in the present work to maximize strength and ductility for a particular volume fraction, and influence the degree of flexibility available to meet these requirements: a fine, uniform particle size distribution; a high interfacial strength; control of particle shape; and a ductile matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. You, M. Dollor, A. W. Thompon and I. M. Bemstein, Met.Trans.22A (1991) 2445.

    Google Scholar 

  2. C. C. Perng, J. R. Hwang and J. L. Doong, Compos. Sci.Tech.49 (1993) 225.

    Google Scholar 

  3. A. K. Kuruvilla, K. S. Prasad, V. V. Bhanuprasad and Y. R. Mahajan,Scripta Metall. 24 (1990) 873.

    Google Scholar 

  4. W. Kai, J. M. Yang and W. C. Harrigan, Jr. Scr.Metall. Mater.23 (1989) 1277.

    Google Scholar 

  5. P. K. Rohatigi,Key Eng.Mater.104–107 (1995) 293.

    Google Scholar 

  6. P. C. Maity and S. C. Panigrahi,ibid. 104–107 (1995) 313.

    Google Scholar 

  7. A. Chrysanthou,ibid. 104–107 (1995) 381.

  8. X. C. Tong, J.Mater.Sci.33 (1998) 5365.

    Google Scholar 

  9. Idem.,Ph.D. thesis, Tsinghua University, Beijing,1995.

    Google Scholar 

  10. A. Bloyce and J. C. Summer, in “Metal Matrix Composites,” edited by G. Chadwick and L. Froyen (E-MRS, North Holland, 1991) p.231.

    Google Scholar 

  11. R. Mitra, M. E. Fine and J. R. Weertman, J.Mater. Res. 8 (1993) 2370.

    Google Scholar 

  12. V. V. Bhanuprasad, M. A. Staley, P. Ramakrishnan and Y. R. Mahajan, Key Eng. Mater.104–107 (1995) 495.

    Google Scholar 

  13. D. J. Loyds, Inter.Mater.Rev. 39 (1994) 1.

    Google Scholar 

  14. S. K. Das, P. S. Gilman and D. Raybould, Key Eng. Mater.38/39 (1989) 367.

    Google Scholar 

  15. R. Mitra, M. E. Fine and J. R. Weertman, J.Mater. Res.8 (1993) 2380.

    Google Scholar 

  16. T. Christman, A. Needleman and S. Suresh, Acta Metall.37 (1989) 3029.

    Google Scholar 

  17. H. G. F. Wilsdorf, in “Dispersion Strengthened Al Alloys,” edited by Y. W. Kim and W. M. Griffith (TMS, Warrendale, PA, 1988) p.3.

    Google Scholar 

  18. D. J. Bacon, U. F. Kocks and R. O. Scattergood, Phil.Mag.28 (1972) 1241.

    Google Scholar 

  19. A. Barbacki and W. Frackowiak, Z.Metallkd. 79 (1988) 410.

    Google Scholar 

  20. L. C. Dzvis and J. E. Allison, Met.Trans. 24A (1993) 2487.

    Google Scholar 

  21. M. K. Premkumar, A. Lawley and M. J. Koczak, Mater.Sci.Eng.174 (1994)127.

    Google Scholar 

  22. John D. Verhoeven, “Fundamentals of Physical Metallurgy” (John Wiley & Sons, Inc., 1975) p.518.

  23. R. J. McElroy and Z. C. Szkopiak,Int.Met.Rev. 17 (1972)175.

    Google Scholar 

  24. S. Mitra and D. McNelley,Met.Trans. 24A (1993) 2589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, X.C., Ghosh, A.K. Fabrication of in situ TiC reinforced aluminum matrix composites. Journal of Materials Science 36, 4059–4069 (2001). https://doi.org/10.1023/A:1017946927566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017946927566

Keywords

Navigation