Skip to main content

Advertisement

Log in

Host-Defense Mechanism of the Ocular Surfaces

  • Published:
Bioscience Reports

Abstract

The defense of the ocular surfaces presents an unique challenge in that not only must integrity be maintained against microbial, inflammatory and physical assault, but it must be done while minimizing the risk of loss of corneal transparency. This puts severe limitations on the degree to which scarring or neovascularization can occur in the cornea secondary to any infectious, inflammatory, immunological or wound healing process. Moreover, this defense system must be equally effective under two extremes of conditions: those found in the open eye and the closed eye environments. It is our contention that these constraints have resulted in the evolution of a highly complex fail-safe defense system that utilizes distinctly different strategies in open and closed eye conditions. The extraordinary effectiveness of this system is evidenced by the fact that despite continued exposure to a microbe rich environment, the external ocular surfaces maintain a very low microbial titer and are highly resistant to breaching by all but a few pathogens. It is the intent of this review to provide a working model of this defense system as it operates under both open and closed eye conditions, to provide evidence in support of this model as well as highlight some of the many areas of uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Selinger, D. S., Selinger, R. C., and Reed, W. P. (1979) Resistance to infection of the external eye: The role of tears. Survey of Ophthalmology 24: 33–38.

    PubMed  Google Scholar 

  2. Smolin, G. (1985) The defense mechanism of the outer eye. Trans. Ophthalmol. Soc. U.K. 104: 363–367.

    PubMed  Google Scholar 

  3. Bron, A. J. and Seal, D. V. (1986) The defences of the ocular surface. Trans. Ophthalmol. Soc. U.K. 105: 18–25.

    PubMed  Google Scholar 

  4. Bron, A. J. (1988) Eyelid secretions and the prevention and production of disease. Eye 2: 164–171.

    PubMed  Google Scholar 

  5. Pleyer, U. and Baatz, H. (1997) Antibacterial protection of the ocular surface. Ophthalmologica 211:Suppl 1, 2–8.

    PubMed  Google Scholar 

  6. Gachon, A. M. and Lacazette, E. (1998) Tear lipocalin and the eye's front line of defence. Br. J. Ophthalmol. 82: 453–455.

    PubMed  Google Scholar 

  7. Bron, A. J. and Tiffany, J. M. (1998) The meibomian glands and tear film lipids. Structure function, and control. Adv. Exp. Med. Biol. 438: 281–295.

    PubMed  Google Scholar 

  8. Mathers, W. D. and Land, J. A. (1998) Meibomian gland lipids, evaporation, and tear film stability. Adv. Exp. Med. Biol. 438: 349–360.

    PubMed  Google Scholar 

  9. Tsubota, K. (1988) Tear dynamics and dry eye. Prog. Retin. Eye. Res. 17: 565–596.

    Google Scholar 

  10. Shine, W. E. and McCulley, J. P. (1998) Keratoconjunctivitis sicca associated with meibomian secretion polar lipid abnormality. Arch. Ophthalmol. 111: 849–852.

    Google Scholar 

  11. McCulley, J. P. and Shine, W. E. (1998) Meibomian secretions in chronic blepharitis. Adv. Exp. Med. Biol. 438: 319–326.

    PubMed  Google Scholar 

  12. Shine, W. E. and McCulley, J. P. (2000) Association of meibum oleic acid with meibomian seborrhea. Cornea 19: 72–74.

    PubMed  Google Scholar 

  13. Maurice, D. M. (1973) The dynamics and drainage of tears. Int. Ophthalmol. Clin. 13: 103–116.

    Google Scholar 

  14. Doane, M. G. (1984) Turnover and drainage of tears. Ann. Ophthalmol. 16: 111–114.

    PubMed  Google Scholar 

  15. Berta, A. (1986) Standardization of tear protein determinations: the effects of sampling, flow rate and vascular permeability. In: The Precorneal Tear Film in Health, Disease, and Contact Lens Wear, (F. J. Holly, ed.) (Dry Eye Institute, Lubbock, Texas), pp. 418–435.

    Google Scholar 

  16. Berta, A. (1992) Chapter 1. Anatomy and physiology of the lacrimal system in Enzymology of the tears. (CRC Press: Boca Raton, FL.).

    Google Scholar 

  17. Janssen, P. T. and van Bijsterveld, O. P. (1983) Origin and biosynthesis of human tear fluid proteins. Invest. Ophthalmol. Vis. Sci. 24: 623–630.

    PubMed  Google Scholar 

  18. Fullard, R. J. and Tucker, D. L. (1991) Changes in human tear protein levels with progressively increasing stimulus. Invest. Ophthalmol. Vis. Sci. 32: 2290–2301.

    PubMed  Google Scholar 

  19. Dartt, D. A. (1989) Signal transduction and control of lacrimal gland protein secretion: a review. Curr. Eye. Res. 8: 619–636.

    PubMed  Google Scholar 

  20. Sack, R. A., Tan, K. O., and Tan, A. (1992) Diurnal tear cycle: evidence for a nocturnal inflammatory constitutive tear fluid. Invest. Ophthalmol. Vis. Sci. 33: 626–640.

    PubMed  Google Scholar 

  21. Daum, K. M. and Hill, R. M. (1984) Human tears: glucose instabilities. Acta Ophthalmol (Copenhagen) 62: 472–478.

    Google Scholar 

  22. Willcox, M. D., Morris, C. A., Thakur, A., Sack, R. A., Wickson, J., and Boey, W. (1997) Comlement and complement regulatory proteins in human tears. Invest. Ophthalmol. Vis. Sci. 38: 1–8.

    PubMed  Google Scholar 

  23. Nuijens, J. H. van Berkel, P. H., and Schanbacher, F. L. (1996) Structure and biological actions of lactoferrin. J. Mammary Gland Biol. Neoplasia. 1: 285–295.

    PubMed  Google Scholar 

  24. Vorland, L. H. (1999) Lactoferrin: a multifunctional glycoprotein. AMPIS 107: 971–981.

    Google Scholar 

  25. Kijlstra, A. (1991) The role of lactoferrin in the nonspecific immune response on the ocular surface. Reg. Immunol. 3: 193–197.

    Google Scholar 

  26. Gahr, M., Speer, C. P., Damerau, B., and Sawatzki, G. (1991) Influence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. J. Leukoc. Biol. 49: 427–433.

    PubMed  Google Scholar 

  27. Baveye, S., Elass, E., Mazurier, J., and Legrand, D. (2000) Lactoferrin inhibits the binding of lipopolysaccharides to L-selectin and subsequent production of reactive oxygen species by neutrophils. FEBS Lett. 469: 5–8.

    PubMed  Google Scholar 

  28. Raphael, G. D., Jeney, J. N., Baraniuk, I. K., Meredith, S. D., and Kiliner, M. A. (1989) Pathophysiology of rhinitis. Lactoferrin and lysozyme in nasal secretions. J. Clin. Invest. 84: 1528–1535.

    PubMed  Google Scholar 

  29. Ellison, R. T., III and Giehl, T. J. (1991) Killing of gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Invest. 88: 1080–1091.

    PubMed  Google Scholar 

  30. Leitch, E. C. and Willcox, M. D. (1998) Synergic antistaphylococcal properties of lactoferrin and lysozyme. J. Med. Microbiol. 47: 837–842.

    PubMed  Google Scholar 

  31. Groenink, J., Wasgreen-Weterings, E., van't Hof, W., Veerman, E. C., and Nieuw Amerongen, A. V. (1999) Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS Microbiol. Lett. 179: 217–222.

    PubMed  Google Scholar 

  32. Swart, P. J., Kuipers, E. M., Smit, C., Van Der Strate, B. W., Harmsen, M. C., and Meijer, D. K. (1998) Lactoferrin. Antiviral activity of lactoferrin. Adv. Exp. Med. Biol. 443: 205–213.

    PubMed  Google Scholar 

  33. Zimecki, M., Wlaszczyk, A., Zagulski, T., and Kubler, A. (1998) Lactoferrin lowers serum interleukin 6 and tumor necrosis factor alpha levels in mice subjected to surgery. Arch. Immunol. Ther. Exp. (Warsaw) 46: 97–104.

    Google Scholar 

  34. Cumberbatch, M. et al. (2000) Regulation of epidermal Langerhans cell migration by lactoferrin. Immunology 100: 21–28.

    PubMed  Google Scholar 

  35. Gasymov, O. K., Abduragimov, A. R., Yusifov, T. N., and Glasgow, B. J. (1999) Interaction of tear lipocalin with lysozyme and lactoferrin. Biochem. Biophys. Res. Commun. 265: 322–325.

    PubMed  Google Scholar 

  36. Lee-Huang, S. et al. (1999) Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. Proc. Natl. Acad. Sci. USA 96: 2678–2681.

    PubMed  Google Scholar 

  37. McNeely, T. B., Dealy, M., Dripps, D., Orenstein, J. M., Eisenberg, S. P., and Wahl, S. M. (1995) Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus I activity in vitro. J. Clin. Invest. 96: 456–464.

    PubMed  Google Scholar 

  38. Ogundele, M. O. (1999) Inhibitors of complement activity in human breast-milk: a proposed hypothesis of their physiological significance. Mediators Inflamm. 8: 69–75.

    PubMed  Google Scholar 

  39. van't Hof, W., Blankenvoorde, M. F., Veerman, E. C. I., and Amerongen, A. V. (1997) The salivary lipocalin von Ebner's gland protein is a cysteine proteinase inhibitor. J. Biol. Chem. 272: 1837–1841.

    PubMed  Google Scholar 

  40. Sack, R. A., Beaton, B. A., Sathe, S., and Bogart, B. (2000) Does tear specific lipocalin function as a cysteine protease inhibitor during the normal diurnal cycle? Invest. Ophthalmol. Vis Sci. 41 (Suppl).

  41. Glasgow, B. J. et al. (1998) A conserved disulfide motif in human tear lipocalins influences ligand binding. Biochemistry 37: 2215–2225.

    PubMed  Google Scholar 

  42. Tei, M., Spurr-Michaud, S. J., Tisdale, A. S., and Gipson, I. K. (2000) Vitamin A deficiency alters the expression of mucin genes by the rat ocular surface epithelium. Invest. Ophthalmol. Vis. Sci. 41: 82–88.

    PubMed  Google Scholar 

  43. Twining, S. S., Zhou, X., Schulte, D. P., Wilson, P. M., Fish, B., and Moulder, J. (1996) Effect of vitamin A deficiency on the early response to experimental Pseudomonas keratitis. Ivûest. Ophthalmol. Vis. Sci. 37: 511–522.

    Google Scholar 

  44. Glasgow, B. J., Marshall, G., Gasymov, O. K., Abduragimov, A. R., Yusifov, T. N., Knobler, C. M. (1999) Tear lipocalins: potential lipid scavengers for the corneal surface. Invest. Ophthalmol. Vis. Sci. 40: 3100–3107.

    PubMed  Google Scholar 

  45. Bogart, B. J., Lew, G., Sathe, S., and Sack, R. A. (1997) Lipocalin as a component of human tear surface active substances. Invest. Ophthalmol. Vis. Sci. 38: (Suppl), S941.

    Google Scholar 

  46. Schoenwald, R. D., Vidvauns, S., Wurster, D. E., and Barfknecht, C. F. (1998) The role of tear proteins in tear film stability in the dry eye patient and in the rabbit. Adv. Exp. Med. Biol. 438: 391–400.

    PubMed  Google Scholar 

  47. Nagyova, B. and Tiffany, J. M. (1999) Components responsible for the surface tension of human tears. Curr. Eye Res. 19: 4–11.

    PubMed  Google Scholar 

  48. Sathe, S., Sakata, M., Beaton, A. R., and Sack, R. A. (1998) Identification, origins and the diurnal role of the principal serine protease inhibitors in human tear fluid. Curr. Eye Res. 17: 348–362.

    PubMed  Google Scholar 

  49. Nadziejko, C. and Finkelstein, I. (1994) Inhibition of neutrophil elastase by mucus glycoprotein. Am. J. Respir. Cell and Mol. Biol. 11: 103–107.

    Google Scholar 

  50. Franken, C., Meijer, C., and Dijkman, J. (1989) Tissue distribution of antileukoprotease and lysozyme in humans. J. Histochem. Cytochem. 37: 493–498.

    PubMed  Google Scholar 

  51. Sakata, M., Shinmura, S., and Tsubota, K. (1999) Localization of a secretory leukocyte protease inhibitor in the human ocular surface. Invest. Ophthalmol. Vis. Sci. 40: S338.

    Google Scholar 

  52. Simpson, A. J., Maxwell, A. I., Govan, J. R., Haslett, C., and Sallenave, J. M. (1999) Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. Febs. Lett. 452: 309–313.

    PubMed  Google Scholar 

  53. Haynes, R. J., Tighe, P. J., and Dua, H. S. (1999) Antimicrobial defensin peptides of human ocular surface. Br. J. Ophthalmol. 83: 737–741.

    PubMed  Google Scholar 

  54. Donoso, L. A. (1999) Antimicrobial defensin peptides of the human ocular surface. Br. J. Ophthalmol. 83: 737–741.

    PubMed  Google Scholar 

  55. McNamara, N. A., Van, R., Tuchin, O. S., and Fleiszig, S. M. (1999) Ocular surface epithelia express mRNA for human beta defensin 2. Exp. Eye Res. 69: 483–490.

    PubMed  Google Scholar 

  56. Wilson, C. L. et al. (1999) Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286: 113–117.

    PubMed  Google Scholar 

  57. Bals, R., Wang, X., Zasloff, M., and Wilson, J. M. (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. USA 95: 9541–9546.

    PubMed  Google Scholar 

  58. Muller, F. M., Lyman, C. A., and Walsh, T. J. (1999) Microbial peptides as potential new antifungals. Mycoses 42:(Suppl. 2) 77–82.

    PubMed  Google Scholar 

  59. Qu, X. D. and Lehrer, R. I. (1998) Secretory phospholipase AZ is the principal bactericide for staphylococci and other gram-positive bacteria in human tears. Infect. Immun. 66: 2791–2797.

    PubMed  Google Scholar 

  60. BeLaaouaj, A. A., Kim, K. S., and Shapiro, S. D. (2000) Degradation of outer membrane protein A in escherichia coli killing by neutrophil elastase. Science 289: 1185–1187.

    PubMed  Google Scholar 

  61. Bennett, W. A., Albert, J. R., Brackin, M. N., Morrison, J. C., and Cowan, B. D. (1999) Secretory component in human amniotic fluid and gestational tissues: a potential endogenous phospholipase A2 inhibitor. J. Soc. Gynecol. Inûestig. 6: 311–317.

    Google Scholar 

  62. Thakur, A., Willcox, M. D., and Stapleton, F. (1998) The proinflammatory cytokines and arachidonic acid metabolites in human overnight tears: homeostatic mechanisms. J. Clin. Immunol. 18: 61–70.

    PubMed  Google Scholar 

  63. Pflugfelder, S. C., Jones, D., Ji, Z., Alfonso, A., and Monroy, D. (1999) Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjogren's syndrome keratoconjunctivitis sicca. Curr. Eye Res. 19: 201–211.

    PubMed  Google Scholar 

  64. Sack, R. A., Underwood, P. A., Tan, K. O., Sutherland, H., and Norris, C. A. (1993) Vitronectinpossible contribution to the closed-eye external host-defense mechanism. Ocul. Immunol. Inflam. 1: 327–336.

    Google Scholar 

  65. Beaton, A. R., Sathe, S., Sack, R. A., Lee, K., and Gould, M. (2000) NGAL and MMP-9 in tear fluid. Invest. Ophthalmol. Vis. Sci. 41: (Suppl.).

  66. Chen, H. B., Yamabayashi, S., Ou, B., Tanaka, Y., Ohno, S., and Tsukahara, S. (1997). Structure and composition of rat precorneal tear film. A study by an in ûiûo cryofixation. Invest. Ophthalmol. Vis. Sci. 38: 381–387.

    PubMed  Google Scholar 

  67. Price-Schiavi, S. A. et al. (1998) Sialomucin complex at the rat ocular surface: a new model for ocular surface protection. Biochem. J. 335: 457–463.

    PubMed  Google Scholar 

  68. Gipson, I. K. and Inatomi, T. (1998) Cellular origin of mucins of the ocular surface tear film. Adv. Exp. Med. Biol. 438: 221–227.

    PubMed  Google Scholar 

  69. Kessler, T. L., Mercer, H. J., and Zieske, J. D. (1995) Stimulation of goblet cell mucous secretion by activation of nerves in rat conjunctiva. Curr. Eye Res. 14: 985–992.

    PubMed  Google Scholar 

  70. Dart, D., Kessler, T., Chung, E., and Zieske, J. (1996) Vasoactive intestinal peptide-stimulated glycoconjugate secretion from conjunctival goblet cells. Curr. Eye Res. 63: 27–34.

    Google Scholar 

  71. Jumblatt, M. M., McKenzie, R. W., and Jumblatt, J. E. (1999) MUC5AC mucin is a component of the human precorneal tear film. Invest. Ophthalmol. Vis. Sci. 40: 43–49.

    PubMed  Google Scholar 

  72. Ellingham, R. B., Berry, M., Stevenson, D., and Corfeld, A. P. (1999) Secreted human conjunctival mucus contains MUC5AC glycoforms. Glycobiology 9: 181–189.

    PubMed  Google Scholar 

  73. Berry, M., Ellingham, R. B., and Corfield, A. P. (1996) Polydispersity of normal human conjunctival mucins. Invest. Ophthalmol. Vis. Sci. 37: 2559–2571.

    PubMed  Google Scholar 

  74. Chao, C. C., Stuebben, A. M., and Butala, S. M. (1990) Characterization of ocular mucus extracts by crossed immunoelectrophoretic techniques. Invest. Ophthalmol. Vis. Sci. 31: 1127–1135.

    PubMed  Google Scholar 

  75. Bogart, B., Sack, R. A., Beaton, A., Lew, G., and Kim, H. C. (1994) sIgA, glycoproteins and soluble mucin in reflex and closed eye tears. Does the epithelium shed its membrane-bound mucin? Invest. Ophthalmol. Vis. Sci. 35: (Suppl) S1560.

    Google Scholar 

  76. Nikolova, E. B., Tomana, M., Russell, M. W. (1994) All forms of human IgA antibodies bound to antigen interfere with complement (C3) fixation induced by IgG or by antigen alone. Scand. J. Immunol. 39: 275–820.

    PubMed  Google Scholar 

  77. Sitaramamma, T., Willcox, M., Sack, R., Shivaji, S., and Morris, C. (1998) Homeostatic mechanisms that operate in the tear film during eye closure-identification of tear borne complement regulators. In: Adûances in Mucous Immunology Vol. 1, (University of Sydney Press.)

  78. Nikolova, E. B. and Russell, M. W. (1995) Dual function of human IgA antibodies: inhibition of phagocytosis in circulating neutrophils and enhancement of responses in IL-8-stimulated cells. J. Leukoc. Biol. 57: 875–882.

    PubMed  Google Scholar 

  79. Silbille, Y., Delacroix, D. L., Merrill, W. W., Chatelain, B., and Vaerman, J. P. (1987) In vitro effects of IgA on human polymorphonuclear leukocytes. Adv. Exp. Med. Biol. 216: 573–579.

    Google Scholar 

  80. Motegi, Y. and Kita, H. (1998) Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils. J. Immunol. 161: 4340–4346.

    PubMed  Google Scholar 

  81. Cheng, K. H., Spanjaard, L., Rutten, H., Dankert, J., Polak, B. C. P., Kilstra, A. (1996) Immunoglobulin A antibodies against Pseudomonas aeruginosa in the tear fluid of contact lens wearers. Invest. Ophthalmol. Vis. Sci. 37: 2081–2088.

    PubMed  Google Scholar 

  82. Lepher, H. F. et al. (1998) Role of mucosal IgA in the resistance to Acanthamoeba keratitis. Invest. Ophthalmol. Vis. Sci. 39: 266–273.

    Google Scholar 

  83. Masinick, S. A., Montgomery, C. P., Montgomery, P. C., and Hazlett, L. D. (1997) Secretory IgA inhibits Pseudomonas aeruginosa binding to cornea and protects against keratitis. Invest. Ophthalmol. Vis. Sci. 38: 910–918.

    PubMed  Google Scholar 

  84. Leher, H. F. et al. (1998) Role of mucosal IgA in the resistance to Acanthamoeba keratitis. Invest. Ophthalmol. Vis. Sci. 39: 2666–2673.

    PubMed  Google Scholar 

  85. Leher, H., Zaragoza, F., Taherzadeh, S., Alizadeh, H., and Niederkorn, J. Y. (1999) Monoclonal IgA antibodies protect against Acanthamoeba keratitis. Exp. Eye Res. 69: 75–84.

    PubMed  Google Scholar 

  86. Jonansen, F. E. (1999) Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor_secretory component-deficient mice. J. Exp. Med. 190: 915–922.

    PubMed  Google Scholar 

  87. Sakata, M., Sack, R. A., Sathe, S., and Beaton, A. R. (1997) Polymorphonuclear leukocyte cells and elastase in tears. Curr. Eye Res. 16: 810–819.

    PubMed  Google Scholar 

  88. Bratt, T., Ohlson, S., and Borregaard, N. (1999) Interactions between neutrophil gelatinase-associated lipocalin and natural lipophilic ligands. Biochim. Biophys. Acta 18: 1472(1–2) 262-269.

    Google Scholar 

  89. Dilly, P. N. (1985) Contribution of the epithelium to the stability of the tear film. Trans. Ophthalmol. Soc. U.K. 140: 381–391.

    Google Scholar 

  90. Sack, R. A., Bogart, B., Beaton, A. R., Sathe, S., and Lew, G. (1997) Diurnal variations in tear glycoproteins: evidence for an epithelial origin for the major non-reducibleHorG450 kDa sialoglycoprotein( s). Curr. Eye Res. 16: 577–588.

    PubMed  Google Scholar 

  91. Cao, Z., Jefferson, D. M., and Panjwani, N. (1998) Role of carbohydrate-mediated adherence in cytopathogenic mechanisms of Acanthamoeba. J. Biol. Chem. 273: 15838–15845.

    PubMed  Google Scholar 

  92. Panjwani, N., Zhao, Z., Baum, J., Hazlett, L. D., and Yang, Z. (1997) Acanthamoebae bind to rabbit corneal epithelium in ûitro. Invest. Ophthalmol. Vis. Sci. 38: 1858–1864.

    PubMed  Google Scholar 

  93. Kerr, J. R. (1999) Cell adhesion molecules in the pathogenesis of and host defence against microbial infection. Mol. Pathol. 52: 220–230.

    PubMed  Google Scholar 

  94. Ramphal, R. (1999) Molecular basis of mucin-Pseudomonas interactions. Biochem. Soc. Trans. 27: 474–477.

    PubMed  Google Scholar 

  95. Singh, A., Hazlett, L. D., and Berk, R. S. (1990) Characterization of Pseudomonas aeruginosa adherence to mouse corneas in organ culture. Infect. Immun. 581: 301–307.

    Google Scholar 

  96. Matoba, A. Y., Hamill, R. J., and Osato, M. S. (1991) The effects of fibronectin on the adherence of bacteria to corneal epithelium. Cornea 10: 387–389.

    PubMed  Google Scholar 

  97. McNamara, N. A., Sack, R. A., and Fleiszig, S. M. (2000) Mucin-bacterial binding assays. Mucin methods and protocols. In: Methods in Molecular Biology (T. Corfield, ed.) 125: 429–437.

    PubMed  Google Scholar 

  98. McNamara, N. A. and Fleiszig, S. M. (1998) Human tear film components bind Pseudomonas aeruginosa. Adv. Exp. Med. Biol. 438: 653–658.

    PubMed  Google Scholar 

  99. Fleiszig, S. M. (1997) Epithelial cell polarity affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity. Infect. Immun. 65: 2861–2867.

    PubMed  Google Scholar 

  100. Williams, D. L. et al. (1999) Plasminogen activator inhibitor type 2 in human corneal epithelium. Invest. Ophthalmol. Vis. Sci. 40: 1669–1675.

    PubMed  Google Scholar 

  101. Lass, J. H., et al. (1999) Expression of two molecular forms of the complement decay-accelerating factor in the eye and lacrimal gland. Invest. Ophthalmol. Vis. Sci. 31: 1136–1148.

    Google Scholar 

  102. Bardenstein, D. S., Dietz, Y., Lass, J. H., and Medof, M. E. (1994) Localization of the complement membrane attack complex inhibitor (CD59) in human conjunctiva and lacriminal gland. Curr. Eye Res. 13: 851–855.

    PubMed  Google Scholar 

  103. Twining, S. S., Fukuchi, T., Yue, B. Y., Wilson, P. M., Zhou, X., and Loushin, G. (1994) Alpha2-macroglobulin is present in and synthesized by the cornea. Invest. Ophthalmol. Vis. Sci. 35: 3226–3233.

    PubMed  Google Scholar 

  104. Boskovic, G. and Twining, S. S. (1988) Local control of alpha1-proteinase inhibitor levels: regulation of alpha1-proteinase inhibitor in the human cornea by growth factors and cytokines. Biochim. Biophys. Acta 1403: 37–46.

    Google Scholar 

  105. Brubaker, R. F., Bourne, W. M., Bachman, L. A., McLaren, J. W. (2000) ascorbic acid content of human corneal epithelium. Invest. Ophthalmol. Vis. Sci. 41: 1681–1683.

    PubMed  Google Scholar 

  106. Gogia, R., Richer, S. P., and Bode, A. M. (1998) Ocular oxidants and antioxidant protection. Proc. Soc. Exp. Biol. Med. 217: 397–407.

    PubMed  Google Scholar 

  107. Fedukowicz, H. B. and Stenson, S. (1985) External Infections of the Eye. (Appleton-Century-Crofts, East Norwalk), pp. 207–212.

    Google Scholar 

  108. Rocha, G. and Baines, M. G. (1992) The immunology of the eye and its systemic interactions. Critical Review Immunol. 12: 81–100.

    Google Scholar 

  109. Rocha, G. J., Deschenes, J., and Rowsey, J. J. (1998) The immunology of corneal graft rejection. Critical Review Immunol. 18: 305–325.

    Google Scholar 

  110. Niederkorn, J. Y. (1990) Immune privilege and immune regulation in the eye. Advances Immunol. 48: 191–226.

    Google Scholar 

  111. Wakefield, D. and Lloyd, A. (1992) The role of cytokines in the pathogenesis of inflammatory eye disease. Cytokine 4: 1–5.

    PubMed  Google Scholar 

  112. Madigan, M. C. et al. (1987) Corneal thickness changes following sleep and overnight contact lens wear in the primate (Macaca fascicularis). Curr. Eye Res. 6: 809–815.

    PubMed  Google Scholar 

  113. McNamara, N. A., Chan, J. S., Han, S. C., Polse, K. A., and McKenney, C. D. (1999) Effects of hypoxia on corneal epithelial permeability. Am. J. Ophthalmol. 127: 153–157.

    PubMed  Google Scholar 

  114. Conners, M. S. et al. (1995) A closed eye contact lens model of corneal inflammation. Part 2: Inhibition of cytochrome P450 arachidonic acid metabolism alleviates inflammatory sequelae. Invest. Opthal. Vis. Sci. 36: 841–850.

    Google Scholar 

  115. Tan, K. O., Sack, R. A., Holden, B. A., and Swarbrick, H. A. (1993) Temporal sequence of changes in tear film composition during sleep. Curr. Eye Res. 12: 1001–1007.

    PubMed  Google Scholar 

  116. Sack, R. A., Sathe, S., Hackworth, L. A., Willcox, M. D., Holden, B. A., and Morris, C. A. (1996) The effect of eye closure on protein and complement deposition on group IV hydrogel contact lenses: relationship to tear flow dynamics. Curr. Eye Res. 15: 1092–1100.

    PubMed  Google Scholar 

  117. Sack, R. A., Beaton, A., Sathe, S., Morris, C., Willcox, M., and Bogart, B. (2000) Towards a closed eye model of the pre-ocular tear layer. Progress in Retinal and Eye Research (in press).

  118. Sack, R. A., Sathe, S., Beaton, A., and Nunes, I. (1995) Tear proteases as a function of eye closure. Invest. Ophthalmol. Vis. Sci. 6: ( Suppl.) S995.

    Google Scholar 

  119. Sack, R. A., Beaton, A. R., and Sathe, S. (1999) Diurnal variations in angiostatin in human tear fluid: a possible role in prevention of corneal neovascularization. Curr. Eye Res. 18: 186–193.

    PubMed  Google Scholar 

  120. Ramachandran, L. et al. (1995) Examination of the conjunctival microbiota after 8 hr of eye closure. CLAO J 21: 195–199.

    PubMed  Google Scholar 

  121. Crouch, R. K., Groletz, P., Snyder, A., and Coles, W. H. (1991) Antioxidant enzymes in human bears. J. Ocul. Pharmacol. 7: 253–258.

    PubMed  Google Scholar 

  122. Gogia, R., Richer, S. P., and Rose, R. C. (1998) Tear fluid content of electrochemically active components including water soluble antioxidants. Curr. Eye Res. 17: 257–263.

    PubMed  Google Scholar 

  123. Kuizenga, A., van Haeringen, N. J., and Kijlstra, A. (1987) Inhibition of hydroxyl radical formation by human tears. Invest. Ophthalmol. Vis. Sci. 28: 305–313.

    PubMed  Google Scholar 

  124. Soker, S., Svahn, C. M., and Neufeld, G. (1993) Vascular endothelial growth factor is inactivated by binding to to Cl?-macroglobulin and binding is inhibited by heparin. J. Biol. Chem. 268: 7685–7691.

    PubMed  Google Scholar 

  125. Murata, M., Nakagawa, M., and Takahasi, M. (1997) Inhibitory effects of plasminogen fragment on experimentally induced neovascularization of rat corneas. Graefes, 4rch Clin.Exp.Ophthalmol. 235: 584–586.

    Google Scholar 

  126. Dawson, D. W. et al. (1999) Pigment epithelium-derived factor: A potent inhibitor of angiogenesis. Science 285: 245–248.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sack, R.A., Nunes, I., Beaton, A. et al. Host-Defense Mechanism of the Ocular Surfaces. Biosci Rep 21, 463–480 (2001). https://doi.org/10.1023/A:1017943826684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017943826684

Navigation