Skip to main content
Log in

Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and curing products

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A commercial polycarbosilane (PCS) preceramic polymer has been characterised as-received and following curing under a variety of conditions. Elemental analysis, gel permeation chromatography (GPC), infra-red spectroscopy (FT-IR), simultaneous thermogravimetric analysis-differential thermal analysis (TG-DTA) and solid state nuclear magnetic resonance (NMR) have been employed. A number average molar mass of 1200 was found with a broad molar mass distribution (\(\overline M _{\text{w}} \)/\(\overline M _{\text{n}} \) = 2.97). Elemental analysis gave an empirical formula of SiC2.2H5.3O0.3. IR and Solid state 29Si and 13C NMR spectra showed the presence of Si-O-Si, SiC4, SiC3H, Si-Si, Si-CH3 and Si-CH2 groups. Simultaneous TG-DTA performed under an argon flow showed that there was a weight gain which started at approximately 240 °C. DTA showed an exotherm starting at this temperature showing that there was oxidation of the polymer even in an inert atmosphere. This is perhaps due to the oxygen in the PCS and there may also be some impurities in the inert atmosphere. Evidently the PCS is very sensitive to oxygen. Above 500 °C, weight loss dominated although the exotherm continued to approximately 700 °C. The effect of heating rate and dwell time at 200 °C on the changes in the chemical composition during curing have been explored using IR and solid state NMR spectroscopies, and elemental analysis. The longer the cure time the higher was the weight gain and greater was the extent of the oxidation reactions. Elemental analysis showed that the ratio of H and C to Si decreased with holding time at the cure-temperature while the amount of oxygen increased. Use of a higher heating rate resulted in a lower weight gain when the same holding time was used. From this it is clear that curing starts below the holding temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Rice, Ceram.Bull. 62(8) (1983) 889.

    Google Scholar 

  2. R. Riedel and W. Dressler, Ceram.Int. 22 (1996) 233.

    Google Scholar 

  3. S. Yajima, J. Hayashi and M. Omori, Chem.Lett. 9 (1975) 931.

    Google Scholar 

  4. S. Yajima, K. Okamura and J. Hayashi, ibid. 1209.

  5. S. Yajima, C. H. Liaw, M. Omori and J. Hayashi, ibid. (1976) 435.

  6. S. Yajima, H. Kayano, K. Okamura, M. Omori, J. Hayashi, T. Matsuzawa and K. Akutsu, Ceram. Bull. 55(12) (1976) 1065.

    Google Scholar 

  7. S. Yajima, J. Hayashi, M. Omori and K. Okamura, Nature 261 (1976) 683.

    Google Scholar 

  8. S. Yajima, K. Okamura, J. Hayashi and M. Omori, J.Amer.Ceram.Soc. 59(7/8) (1976) 324.

    Google Scholar 

  9. S. Yajima, in “Handbook of Composites,” edited by W. Watt and B. V. Perov (Elsevier science, Amsterdam, 1985) pp. 201–237.

    Google Scholar 

  10. Idem., US Patent: 4052430 (1977).

    Google Scholar 

  11. Idem., US Patent: 4100233 (1978).

    Google Scholar 

  12. G. Pouskouleli, Ceram.Int. 15 (1989) 213.

    Google Scholar 

  13. D. R. Petrak, “Polymer-Derived Ceramics,” in Engineered Materials Handbook, Vol. 4, Ceramics and Glasses, 1991, pp. 223–226.

    Google Scholar 

  14. R. Riedel, J.Eur.Ceram.Soc. 15 (1995) 703.

    Google Scholar 

  15. B. I. Lee and L. L. Hench, Mat.Res.Soc.Symp.Proc. 73 (1986) 815.

    Google Scholar 

  16. H. J. Wu and L. V. Interrante, Polym.Prepr. 33(2) (1989) 210.

    Google Scholar 

  17. T. J. Fitzgerald and A. Mortensen, J.Mater.Sci. 30(9) (1995) 1025.

    Google Scholar 

  18. M. Takeda, Y. Imai, H. Ichikawa and T. Ishikawa, Ceram.Eng.Sci.Proc. 12(7/8) (1991) 1007.

    Google Scholar 

  19. R. A. Sinclair, in “Ultrastructure Processing of Ceramics, Glasses and Composites,” edited by L. L. Hench and D. R. Ulrich (Wiley Interscience, New York, 1984) p. 256.

    Google Scholar 

  20. T. Taki, S. Maeda, K. Okamura, M. Sato and T. Matsuzawa, J.Mater.Sci.Lett. 6 (1987) 826.

    Google Scholar 

  21. T. Taki, K. Okamura and M. Sato, J.Mater.Sci. 24 (1989) 1263.

    Google Scholar 

  22. H. Suwardie, K. M. Kalyon and S. Kovenklioglu, J.Appl.Polym.Sci. 42 (1991) 1087.

    Google Scholar 

  23. H. Q. Ly, R. Taylor, R. J. Day and F. Heatley, to be published.

  24. F. Heatley, in “NMR Spectroscopy of Polymers,” edited by R. N. Ibbett (Blackie, 1993).

  25. K. Okamura, private communications.

  26. E. Bouillon, F. Langlais, R. Pailler, R. Naslain, F. Cruege, P. V. Huong, J. C. Sarthou, A. Delpuech, C. Laffon, P. Lagarde, M. Monthioux and A. Oberlin, J.Mater.Sci. 26 (1991) 1333.

    Google Scholar 

  27. M. Narisawa, Bull.Chem.Soc.Jpn. 68 (1995) 1098.

    Google Scholar 

  28. Y. Hasegawa and K. Okamura, J.Mater.Sci. 21 (1986) 321.

    Google Scholar 

  29. R. M. Silverstein, G. Clayton Bassler and T. C. Morrill, in “Spectrometric Identification of Organic Compounds” (5th edition, Wiley, New York, 1991).

    Google Scholar 

  30. F. Heatley, (Department of Chemistry, University of Manchester), private communication.

  31. (Physics and Chemistry Handbook).

  32. Y. Hasegawa, J.Mater.Sci. 24 (1989) 1177.

    Google Scholar 

  33. G. D. Soraru, F. Babonneau and J. D. Mackenzie, ibid. 25 (1990) 3886.

    Google Scholar 

  34. K. Suzuya, K. Shibata, K. Okamura and K. Suzuki, J.Non-Cryst.Solids 150 (1992) 255.

    Google Scholar 

  35. Y. Hasegawa and K. Okamura, J.Mater.Sci. 18 (1983) 3633.

    Google Scholar 

  36. G. Chollon, M. Czerniak, R. Pailler, X. Bourrat, R. Naslain, J. P. Pilllot and R. Cannet, ibid. 32 (1997) 893.

    Google Scholar 

  37. Y. Hasegawa, M. Iimura and S. Yajima, ibid. 15 (1980) 720.

    Google Scholar 

  38. H. Ishikawa, F. Machino, S. Mitsuno, T. Ishikawa, K. Okamura and Y. Hasegawa, ibid. 21 (1986) 4352.

    Google Scholar 

  39. C. Y. Yang, P. S. Marchetti and L. V. Interrante, Polym.Prepr. 33(2) (1992) 208.

    Google Scholar 

  40. G. R. Hatfield and K. R. Carduner, J.Mater.Sci. 24 (1989) 4209.

    Google Scholar 

  41. K. Okamura, Composites 18(2) (1987) 107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ly, H.Q., Taylor, R., Day, R.J. et al. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and curing products. Journal of Materials Science 36, 4037–4043 (2001). https://doi.org/10.1023/A:1017942826657

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017942826657

Keywords

Navigation