Skip to main content
Log in

A transmission electron microscopy study of interfaces and matrix homogeneity in ultra-high-performance cement-based materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultra-high-performance cement-based materials produced under different conditions have been characterized by transmission electron microscopy (TEM), scanning transmission electron Microscopy (STEM), high resolution transmission microscopy (HRTM) and chemical analysis. In addition to cement, these materials contain large amounts of crushed quartz and amorphous submicrometre silica. A post-set heat treatment was also applied in some cases. An abrasive thinning method combined with grazing angle ion etching allowed the preparation of 100 nm thick specimens with wide observation surface areas while avoiding any water or CO2 contact which may cause changes. Clinker, silica fume and crushed quartz reactivity as a function of the curing processes have been studied, as well as the interfacial zones with the hydrated matrices. The Ca/Si ratio spatial distribution in hydrated products has been analyzed and shown to undergo strong local fluctuations. Nevertheless, the composition fluctuations were less pronounced and the average Ca/Si ratio was lower than in silica-free cement paste. HRTM lattice imaging shows the coexistence of nanocrystalline phases and mesoscale ordered regions within an amorphous matrix. A d-spacings analysis of the nanocrystalline phase suggests a tobermorite-like structure for the calcium silicate hydrates, whereas the mesoscale order might reflect modulations in the water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lu and J. F. Young, J.Amer.Ceram.Soc. 76 (1993) 1329.

    Google Scholar 

  2. B. Borglum, J. F. Young and R. C. Buchanan, Advd. Cem.Bsd.Mater. 1 (1993) 47.

    Google Scholar 

  3. P. Lu, G. K. Sun and J. F. Young, J.Amer.Ceram.Soc. 76 (1993) 480.

    Google Scholar 

  4. P. Richard and M. Cheyrezy, in Amer. Concr. Inst. Symposium, ACI Spring Convention, San Francisco (1994) p. 144 and 507.

  5. P. Richard and M. Cheyrezy, Cem.Concr.Res. 25 (1995) 1501.

    Google Scholar 

  6. S. A. Abo-El-Enein, E. E. Hekal, F. I. El-Hosiny, S. L. Marusin, II Cemento 3 (1992) 77.

    Google Scholar 

  7. M. Djuric, M. Komljenovic, L. Petrasinovic-Stojkanovic and B. Zivanovic, Adv.Cem.Res. 6 (1994) 19.

    Google Scholar 

  8. A. Feylessoufi, F. Villieras, L. J. Michot, P. De Donato, J. M. Cases and P. Richard, Cem.Concr.Composites 18 (1996) 23.

    Google Scholar 

  9. A. Feylessoufi, M. Crespin, P. Dion, F. Bergaya, H. Van Damme and P. Richard, Advd.Cem.Bsd.Mater. 6 (1997) 21.

    Google Scholar 

  10. A. Grudemo, in 4th International Symposium on the Chemistry of Cement, Washington DC, 1962 (US Department of Commerce) p. 615.

  11. H. M. Jennings, N. J. Dalgleish and P. L. Pratt, J.Amer.Ceram.Soc. 64 (1981) 567.

    Google Scholar 

  12. K. Mohan and H. F. W. Taylor, ibid. 65 (1982) 717.

    Google Scholar 

  13. G. W. Groves, P. J. Le Sueur and W. Sinclair, ibid. 69 (1986) 353.

    Google Scholar 

  14. G. W. Groves, Mater.Res.Soc.Symp.Proc. 85 (1987) 3.

    Google Scholar 

  15. E. Henderson and J. E. Bailey, J.Mater.Sci. 23 (1988) 501.

    Google Scholar 

  16. I. G. Richardson and G. W. Groves, ibid. 28 (1993) 265.

    Google Scholar 

  17. D. Viehland, J. F. Li, L. J. Yuan and Z. Xu, J.Amer. Ceram.Soc. 79 (1996) 1731.

    Google Scholar 

  18. S. Chatterji, ibid. 80 (1997) 2959.

    Google Scholar 

  19. Z. Xu and D. Viehland, ibid. 80 (1997) 2961.

    Google Scholar 

  20. X. Zhang, W. Chang, T. Zhang and C. K. Ong, ibid. 83 (2000) 1731.

    Google Scholar 

  21. L. Gatty, Ph.D. thesis, Ecole Centrale de Nantes, Nantes, France, 1996.

    Google Scholar 

  22. M. Regourd, B. Mortureux and H. Hornain in “Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete,” edited by V. M. Malhotra (American Concrete Institute, Detroit, 1983) Vol. 2, p. 847.

    Google Scholar 

  23. H. F. W. Taylor, Advd.Cem.Bsd.Mater. 1 (1993) 38.

    Google Scholar 

  24. S. Diamond “Hydraulic Cement Pastes: Their Structure and Properties” (Cement and Concrete Association, Slough, U.K., 1976).

    Google Scholar 

  25. S. Goto, M. Daimon, G. Hosaka and R. Kondo, J.Amer.Ceram.Soc. 59 (1976) 281.

    Google Scholar 

  26. P. L. Pratt and A. Ghose, Philos.Trans.R.Soc.London A 310 (1983) 93.

    Google Scholar 

  27. K. Scrivener and P. L. Pratt, Mater.Res.Soc.Symp. Proc. 31 (1984) 351.

    Google Scholar 

  28. M. W. Grutzeck and D. M. Roy, Nature (London) 223 (1969) 464.

    Google Scholar 

  29. P. L. Rayment and A. J. Majumdar, Cem.Concr.Res. 12 (1982) 753.

    Google Scholar 

  30. R. Maggion, Ph.D. thesis, Universisté d'Orléans, 1991.

  31. S. Gauffinet, E. Finot, E. Lesniewska and A. Nonat, C.R.Acad.Sci.(Paris) 327 (1998) 231.

    Google Scholar 

  32. S. Mansoutre, Ph.D. thesis, Université d'Orléans, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Van Damme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatty, L., Bonnamy, S., Feylessoufi, A. et al. A transmission electron microscopy study of interfaces and matrix homogeneity in ultra-high-performance cement-based materials. Journal of Materials Science 36, 4013–4026 (2001). https://doi.org/10.1023/A:1017938725748

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017938725748

Keywords

Navigation