Skip to main content
Log in

Monte Carlo simulation of fatigue of a fibre tow undergoing chemical reaction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Monte Carlo simulation has been used to model environmental attack of a fibre tow, and suggested that such attack could lead to fatigue-type behaviour under static load conditions. The system was assumed to be fibre dominated with the presence of matrix cracks relaxing stress in the matrix and providing a path for environmental species to reach the fibres. Lifetime under load was related to the fibre-environment reaction rate and distribution of forces from broken fibres. Fatigue exponents ranging from 1.0 to 1.5 were predicted for selected reaction rates at stress levels less than 140 MPa. Simulation results were compared with literature data, and predicted fatigue exponents were substantially lower than those observed experimentally. This result could suggest that fibre-environment chemical reaction was not the sole mechanism operable in experiments. However, it was suggested that a stress dependent reaction rate could be used to improve the correlation between the simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. X. Han and S. Suresh, J. Amer. Ceram. Soc. 72 (1989) 1233.

    Google Scholar 

  2. J. W. Holmes, ibid. 74 (1991) 1639.

    Google Scholar 

  3. L. P. Zawada, L. M. Butkus and G. A. Hartman, ibid. 74 (1991) 2851.

    Google Scholar 

  4. S. F. Shuler, J. W. Homes, S. Wu and D. Roach, ibid. 76 (1993) 2327.

    Google Scholar 

  5. S. Raghuraman, J. F. Stubbins, M. K. Ferber and A. A. Wereszczak, J. Nuclear Mater. 212–215 (1994) 840.

    Google Scholar 

  6. D. W. Worthem, NASA Lewis Research Center, Report No. 195441 March (1995).

  7. M. H. Headinger, P. E. Gray and D. H. Roach, Paper presented at the Composites and Advanced Structures Cocoa Beach Conference, January (1995).

  8. M. J. Verrilli, A. M. Calomino and D. N. Brewer, Paper presented at the Composites and Advanced Structure Cocoa Beach Conference, January (1996).

  9. E. Lara-Curzio, “Stress Rupture of NicalonsuTM/SiC CFCC's” (Oak Ridge National Laboratory, 1996).

  10. H. T. Lin, P. F. Becher, K. L. More, P. F. Tortorelli and E. Lara-Curzio, “Evaluation of Stress-Temperature-LifetimeWorking Envelop for Enhanced Nicalon-SiC CFCC's” (Oak Ridge National Laboratory, 1996).

  11. M. Mixuno, S. Zhu, Y. Nagano, Y. Sakaida, Y. Kagawa and M. Watanabe, J. Amer. Ceram. Soc. 79 (1996) 3065.

    Google Scholar 

  12. E. Y. Sun, S. T. Lin and J. J. Brennan, ibid. 80 (1997) 609.

    Google Scholar 

  13. J. J. Brennan, “Materials Science Research, ” Vol. 20 (Plenum Press, New York, 1986) p. 549.

    Google Scholar 

  14. R. F. Cooper and K. Chyung, J. Mater. Sci. 22 (1987) 3148.

    Google Scholar 

  15. H. C. Cao, E. Bischoff, O. Sbaizero, M. Ruhle, A. G. Evans, D. B. Marshall and J. J. Brennan, J. Amer. Ceram. Soc. 73 (1989) 1691.

    Google Scholar 

  16. R. W. Rice, US Patent No. 4642271, February (1987).

  17. J. Amer. Ceram. Soc. 72 (1989) 1764.

  18. R. Naslain, O. Dugne and A. Guette, ibid. 74 (1991) 2482.

    Google Scholar 

  19. A. M. Calomino, Private communication.

  20. R. T. Bhatt, J. Amer. Ceram. Soc. 75 (1992) 405.

    Google Scholar 

  21. K. P. Plucknett and M. H. Lewis, J. Mater. Sci. Lett. 14 (1995) 1223.

    Google Scholar 

  22. L. Filipuzzi, G. Camus and R. Naslain, J. Amer. Ceram. Soc. 77 (1994) 449.

    Google Scholar 

  23. D. Butt, R. E. Tressler and K. Spear, ibid. 75 (1992) 3257.

    Google Scholar 

  24. S. M. Johnson, R. D. Brittain, R. Lamoreaus and D. J. Rowecliffe, ibid. 71 (1988) C132.

    Google Scholar 

  25. T. Narushima, T. Goto, Y. Yokoyama, M. Takeuchi, Y. Iguchi and T. Hirai, ibid. 77 (1994) 1079.

    Google Scholar 

  26. W. D. Callister, JR, “Materials Science and Engineering—An Introduction” (Wiley, New York, 1997) p. 513.

    Google Scholar 

  27. R. S. Zimmerman and D. F. Adams, NASA, Report No. 177 525 (1989).

  28. G. Simon and A. R. Bunsell, J. Mater. Sci. 19 (1984) 3649.

    Google Scholar 

  29. L. C. Sawyer, M. Jamieson, D. Brikowski, M. I. Haider and R. T. Chen, J. Amer. Ceram. Soc. 70 (1987) 798.

    Google Scholar 

  30. D. J. Pysher, K. C. Goretta, R. S. Hodder, Jr. and R. E. Tressler, ibid. 72 (1989) 284.

    Google Scholar 

  31. A. J. Eckel and R. C. Bradt, ibid. 72 (1989) 455.

    Google Scholar 

  32. F. W. Zok, X. Chen and C. H. Weber, ibid. 78 (1995) 1965.

    Google Scholar 

  33. A. M. Calomino, Private communication.

  34. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes in Fortran. The Art of Scientific Computing, ” 2nd edn (Cambridge, University Press, Cambridge, 1992).

    Google Scholar 

  35. E. J. Dudewicz and T. G. Ralley, “The Handbook of Random Number Generation and Testing with TESTRAND Computer Code” (American Sciences Press, Inc., Columbus, OH, 1981).

    Google Scholar 

  36. R. V. Hogg and E. A. Tanis, “Probability and Statistical Inference” (Macmillan, New York, 1983).

    Google Scholar 

  37. D. E. Knuth, “The Art of Computer Programming, ” 2nd edn (Addison Wesley, 1981).

  38. R. W. Davidge, “Mechanical Behavior of Ceramics” (Cambridge University press, Cambridge, 1979) p. 144.

    Google Scholar 

  39. S. M. Spearing, F. W. Zok and A. G. Evans, J. Amer. Ceram. Soc. 77 (1994) 2381.

    Google Scholar 

  40. S. M. Weiderhorn, ibid. 55 (1972) 81.

    Google Scholar 

  41. R. Y. Rubinstein, “Simulation and the Monte Carlo Method” (Wiley, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coon, D.N., Calomino, A.M. Monte Carlo simulation of fatigue of a fibre tow undergoing chemical reaction. Journal of Materials Science 36, 2597–2605 (2001). https://doi.org/10.1023/A:1017931906352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017931906352

Keywords

Navigation