Skip to main content
Log in

Gasdynamic Analogies in Problems of the Oblique Interaction of MHD Shock Waves

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Gasdynamic analogies are constructed for the oblique interaction of MHD shock waves (counter colliding or overtaking). These analogies fairly adequately describe the complex dependences of the gas dynamic parameters of the medium on the magnetic field strength and inclination. The complete gas dynamic analogy in which the MHD interaction is simulated by the interaction of two gas dynamic shock waves with Mach numbers calculated on the basis of the fast magnetosonic speeds adequately describe the state of the medium for weak and moderate magnetic fields. The “hybrid” model, in which the state behind the interacting shock wave is calculated from the MHD relations on discontinuities and the gas dynamic analogy is then used, gives satisfactory results in a stronger field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. A. Barmin and E. A. Pushkar', “Shock wave intersection in magnetohydrodynamics,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 132 (1991).

  2. A. A. Barmin and E. A. Pushkar', “Interaction of strong discontinuities in a magnetized conducting medium,” in: R. Brun and L. Z. Dumitrescu (Eds.), Shock waves @ Marseille. Vol. II. Physico-Chemical Processes and Nonequilibrium Flow, Proc. 19th Intern. Symp. on Shock Waves, Springer, N. Y. (1995), P. 433.

    Google Scholar 

  3. E. A. Pushkar', “Regular oblique interaction of shock waves traveling in the same direction in a conducting medium with a magnetic field,” Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 127 (1995).

  4. L. I. Sedov, Similarity and Dimensional Methods in Mechanics, CRC Press (1993).

  5. S. A. Grib, B. E. Brunelli, M. Dryer, W. W. Shen, “Interaction of interplanetary shock waves with the bow shockmagnetopause system,” J. Geophys. Res., 84, No. A10, 5907 (1979).

    Google Scholar 

  6. H. C. Zhuang, C. T. Russell, E. J. Smith, and J. T. Gosling, “Three-dimensional interaction of interplanetary shock waves with the bow shock and magnetopause: A comparison of theory with ISEE observations with threedimensional plasma measurements,” J. Geophys. Res., 86. No. A7, 5590 (1981).

    Google Scholar 

  7. S. A. Grib, “Interaction of non-perpendicular/parallel solar wind shock waves with the earth's magnetosphere,” Space Sci. Rev., 32, No. 1-2, 43 (1982).

    Google Scholar 

  8. A. Barnes, “Motion of the heliospheric termination shock: A gas dynamic model,” J. Geophys. Res., 98, No. A9, 15137 (1993).

    Google Scholar 

  9. K. Naidu and A. Barnes, “Motion of the heliospheric termination shock. 3. Incident interplanetary shocks,” Geophys. Res., 99, No. A6, 11553 (1994).

    Google Scholar 

  10. K. Naidu and A. Barnes, “Motion of the heliospheric termination shock. 4. MHD effects,” J. Geophys. Res., 99, No. A9, 17673 (1994).

    Google Scholar 

  11. Y. C. Whang and L. F. Burlaga, “Interaction of global merged interaction region shock with the heliopause and its relation to the 2-and 3-kHz radio emissions,” J. Geophys. Res., 99, No. A11, 21457 (1994).

    Google Scholar 

  12. V. B. Baranov, A. A. Barmin, and E. A. Pushkar', “Interaction of interplanetary shocks with the heliospheric termination shock: Two-dimensional magnetohydrodynamic model,” J. Geophys. Res., 101, No. A12. 27465 (1996).

    Google Scholar 

  13. A. G. Kulikovskii and G. A. Lyubimov, Magneto-Hydrodynamics, Addison-Wesley, Reading, Mass. (1965).

    Google Scholar 

  14. E. A. Pushkar', “Oblique non-plane-polarized MHD shock waves and their interaction,” Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 136 (1999).

  15. G. G. Chernyi, Gas Dynamics [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  16. E. A. Pushkar', “Oblique magnetohydrodynamic shocks,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 106 (1978).

  17. E. A. Pushkar', “Generalized polars of plane-polarized steady self-similar flows in magnetohydrodynamics,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 111 (1979).

  18. E. A. Pushkar', “Simple steady-state waves in an inclined magnetic field,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 130 (1976).

  19. E. A. Pushkar', “Methods of numerical simulation of the oblique shock wave interaction in magnetized conducting media”, in: Third Russian-Japanese Symposium on Computational Fluid Dynamics, Book Absr., Vol. 2, Dal'nauka, Vladivostok (1992), p. 158.

    Google Scholar 

  20. A. A. Barmin and E. A. Pushkar', “Oblique interaction of strong discontinuities in magnetohydrodynamics,” in: Mechanics: Contemporary Problems [in Russian], Moscow State University Press, Moscow (1987), p. 100.

    Google Scholar 

  21. A. A. Barmin and E. A. Pushkar', “Oblique interaction of Alfvén and contact discontinuities in magnetohydrodynamics,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 131 (1990).

  22. A. A. Barmin and E. A. Pushkar', “Oblique interaction of an Alfvén discontinuity and a fast magnetohydrodynamic shock wave propagating in opposite directions,” Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 120 (1997).

  23. A. A. Barmin and E. A. Pushkar', “Nonregular interaction of shock waves in magnetohydrodynamics,” Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 184 (1993).

  24. L. G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, Oxford (1966).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pushkar', E.A. Gasdynamic Analogies in Problems of the Oblique Interaction of MHD Shock Waves. Fluid Dynamics 36, 989–1003 (2001). https://doi.org/10.1023/A:1017931113885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017931113885

Keywords

Navigation