Skip to main content
Log in

The role of pressure annealing in improving the stiffness of polyethylene/hydroxyapatite composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of the combination of pressure annealing and subsequent hydrostatic extrusion on some mechanical properties of composites of hydroxyapatite in a polyethylene matrix is examined. Both linear and branched polyethylenes have been used as the matrix and it is found that composites with the former can be processed to give the higher modulus. An important practical finding is that products with a Young's modulus well into the range shown by cortical bone can be produced. The critical step in the enhancement of the modulus is pressure annealing which alters the morphology of the linear polyethylene, encouraging the development of both crystallinity and crystallite size. The presence of butyl branches along the molecular backbone limits the extent to which these can be developed by pressure annealing and accounts for the failure of the process to improve the modulus of composites using the branched material. Comparison with similarly prepared samples of the pure polyethylenes shows that the development of orientation in the polyethylene is considerably restricted by the presence of hydroxyapatite particles, irrespective of whether pressure annealing is performed prior to extrusion. Consequently, the properties of these composites are less than might be expected from studies on the isolated polyethylenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bonfield, J. Biomed. Eng. 10 (1988) 522.

    PubMed  Google Scholar 

  2. Idem., Ann. New York Acad. Sci. 253 (1988) 173.

    Google Scholar 

  3. D. T. Reilly and A. H. Burstein, J. Bone Jnt. Surg. 56–A (1974) 4.

    Google Scholar 

  4. N. H. Ladizesky, I. M. Ward and W. Bonfield, J. Appl. Pol. Sci. 65 (1997) 1865.

    Google Scholar 

  5. M. Wang, N. H. Ladizesky, K. E. Tanner, I. M. Ward and W. Bonfield, J. Mater. Sci. 35 (2000) 1023.

    Google Scholar 

  6. M. M. Shahin, R. H. Olley, D. C. Bassett, A. S. Maxwell, A. P. Unwin and I. M. Ward, ibid. 31 (1996) 5541.

    Google Scholar 

  7. A. S. Maxwell, A. P. Unwin and I. M. Ward, Polymer 37 (1996) 3283.

    Google Scholar 

  8. H. H. Moroi, K. Okimoto, R. Moroi and Y. Terada, Int. J. Prosthodontics 6 (1993) 564.

    Google Scholar 

  9. M. J. Troughton, G. R. Davies and I. M. Ward, Polymer 30 (1989) 990.

    Google Scholar 

  10. J. Heijboer, P. Deking and A. J. Staverman, in Proc. Int. Cong. Rheol. (Butterworth, London, 1954).

    Google Scholar 

  11. E. R. Andrew, Phys Rev. 91 (1953) 425.

    Google Scholar 

  12. M. M. Shahin, R. H. Olley and M. J. Blissett, J. Polym. Sci. Polym. Phys. Edn. 37 (1999) 2279.

    Google Scholar 

  13. J. H. M. Willison and A. J. Rowe, “Replica, Shadowing and Freeze-Etching Techniques” (North Holland, Amsterdam, 1980).

    Google Scholar 

  14. D. C. Bassett and D. R. Carder, Phil. Mag. 28 (1973) 513.

    Google Scholar 

  15. A. S. Maxwell, A. P. Unwin, I. M. Ward, M. I. Abo el maaty, M. M. Shahin, R. H. Olley and D. C. Bassett, J. Mater. Sci. 32 (1997) 567.

    Google Scholar 

  16. D. C. Bassett, B. A. Khalifa and R. H. Olley, Polymer 17 (1976) 284.

    Google Scholar 

  17. A. Mehta and B. Wunderlich, Coll. Polym. Sci. 253 (1975) 193.

    Google Scholar 

  18. D. C. Bassett, “Principles of Polymer Morphology,” (Cambridge University Press, Cambridge, 1981).

    Google Scholar 

  19. N. G. McCrum, B. E. Read and G. Williams, “Anelastic and Dielectric Effects in Polymeric Solids” (Wiley, London, 1967) p. 353.

    Google Scholar 

  20. R. H. Boyd, Polymer 26 (1985) 323.

    Google Scholar 

  21. R. Lam and P. H. Geil, Polymer Bulletin 1 (1978) 127.

    Google Scholar 

  22. R. Popli, M. Glotin and L. Mandelkern, J. Polym. Sci., Phys. Edn. 22 (1984) 407.

    Google Scholar 

  23. C. W. Wilson and G. E. Pake J. Polym. Sci. 10 (1953) 503.

    Google Scholar 

  24. K. Bergmann and K. Nawotki,Kolloid-Z. 219 (1967) 132.

    Google Scholar 

  25. H. Pranadi and A. J. Manuel, Polymer 21 (1980) 303.

    Google Scholar 

  26. V. J. McBrierty and I. M. Ward, Brit. J. Appl. Phys. 1 (1968) 1529.

    Google Scholar 

  27. J. B. Smith, A. J. Manuel and I. M. Ward, Polymer 16 (1975) 57.

    Google Scholar 

  28. A. K. Powell, G. Craggs and I. M. Ward, J. Mater. Sci. 25 (1990) 3990.

    Google Scholar 

  29. G. E. Attenburrow and D. C. Bassett, J.Mater. Sci. 12 (1977) 192.

    Article  Google Scholar 

  30. D. Hull and T. W. Clyne, “An Introduction to Composite Materials” (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  31. M. Bonner, L. S. Saunders, I. M. Ward, G. W. Davies, M. Wang, K. E. Tanner and W. Bonfield, in preparation.

  32. A. Gusev and I. M. Ward, unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unwin, A.P., Ward, I.M., Ukleja, P. et al. The role of pressure annealing in improving the stiffness of polyethylene/hydroxyapatite composites. Journal of Materials Science 36, 3165–3177 (2001). https://doi.org/10.1023/A:1017926100999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017926100999

Keywords

Navigation