Skip to main content
Log in

Waves in a Saturated Porous Half-Space. Part 1

  • Published:
International Applied Mechanics Aims and scope

Abstract

It is substantiated that the problem formulated in the title plays a fundamental role in the rational interpretation of experiments on massive specimens. These experiments are intended for studying waves excited by a short-term harmonic pulse. The problem for a porous saturated medium is a direct analogy of the problem previously solved for composite materials. The procedure of solving the problem based on the Laplace time transform is described. An analysis of the integrands in the inverse transform is nontrivial and cannot be stated briefly. Therefore, Part 1 closes with general comments on the inverse transform. Part 2 will include a detailed description of the inverse transform and many physical conclusions: on conformity of the stationary part of the solution to plane harmonic compression–tension waves with frequency of the given harmonic pulse, on attenuation of all types of waves, and on two types of nonstationary waves

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. K. Balakirev and I. A. Gilinskii, Waves in Piezocrystals [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  2. R. I. Nigmatulin, Fundamentals of the Mechanics of Heterogeneous Media [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  3. V. N. Nikolaevskii, The Mechanics of Porous and Cracked Media [in Russian], Nedra, Moscow (1984).

    Google Scholar 

  4. V. N. Nikolaevskii, K. S. Basniev, A. G. Gorbunov, and G. A. Zotov, The Mechanics of Saturated Porous Media [in Russian], Nedra, Moscow (1970).

    Google Scholar 

  5. Ya. Ya. Rushchitskii, Elements of Mixture Theory [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  6. Ya. Ya. Rushchitskii and S. I. Tsurpal, Waves in Materials with a Microstructure [in Ukrainian], Inst. Mekh. NANU, Kiev (1998). 526

    Google Scholar 

  7. Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lectures on Complex Variable Theory [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  8. C. Truesdell (ed.), Mechanics of Solids, Vol. 1 V/a of the Encyclopedia of Physics (S. Flugge, chief ed.), Springer-Verlag, Berlin–Heidelberg–New York (1973).

    Google Scholar 

  9. V. K. Kinra, M. S. Petraitis, and S. K. Datta, “Ultrasonic wave propagation in a random particulate composite, ” Int. J. Solids Struct., 16, No. 3, 301–312 (1980).

    Google Scholar 

  10. V. K. Kinra and E. Ker, “Effective elastic moduli of a thin-walled glass microsphere/PMMA composite, ” J. Comp. Mater., 16, No. 2, 117–138 (1982).

    Google Scholar 

  11. V. K. Kinra and E. Ker, “An experimental investigation of pass bands and stop bands in two periodic particulate composites, ” Int. J. Solids Struct., 19, No. 3, 393–409 (1983).

    Google Scholar 

  12. V. K. Kinra, E. Ker, and S. K. Datta, “Influence of particle resonance on wave propagation in a random particulate composite, ” Mech. Res. Commun., 9, No. 2, 109–114 (1982).

    Google Scholar 

  13. T. J. Plona, “Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, ” Appl. Phys. Let., 37, No. 4, 259–261 (1980).

    Google Scholar 

  14. J. J. Rushchitsky, “On the question of applicability of the linear mixture theory, ” Soviet (Int.) Appl. Mech., 17, No. 6, 58–62 (1980).

    Google Scholar 

  15. J. J. Rushchitsky and B. B. Ergashev, “Theoretical analysis of nonstationary effects in the massive sample from fibrous composite under a short-time action of the harmonic pulse, ” Soviet (Int.) Appl. Mech., 23, No. 12, 82–89 (1987).

    Google Scholar 

  16. J. J. Rushchitsky, “Nonlinear waves in solid mixtures, ” Int. Appl. Mech., 33, No. 1, 3–38 (1997).

    Google Scholar 

  17. J. J. Rushchitsky, “Interaction of waves in solids, ” Appl. Mech. Rev., 52, No. 2, 35–74 (1999).

    Google Scholar 

  18. Ya. Ya. Rushchitskii, “On the classification of elastic waves, ” Int. Appl. Mech., 35, No. 11, 1104–1110 (1999).

    Google Scholar 

  19. Ya. Ya. Rushchitskii, “Extension of the microstructural theory of two-phase mixtures to composite materials, ” Int. Appl. Mech., 36, No. 5, 586–614 (2000).

    Google Scholar 

  20. Ya. Ya. Rushchitskii, “The wave energy in nonlinearly deformable composites, ” Int. Appl. Mech., 37, No. 1, 107–114 (2001).

    Google Scholar 

  21. C. H. Yew and P. N. Jogi, “A study of wave motion in fiber-reinforced medium, ” Int. J. Solids Struct., 12, No. 6, 694–703 (1976).

    Google Scholar 

  22. C. H. Yew and P. N. Jogi, “The determination of Biot's parameters for sandstones. P. 1. Static tests, ” Exp. Mech., 18, No. 2, 167–172 (1978).

    Google Scholar 

  23. C. H. Yew, P. N. Jogi, and K. E. Gray, “Estimation of the mechanical properties of fluid saturated porous rocks using the measured wave motion, ” J. Energy Res. Tech., 101, No. 1, 112–116 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushchitskii, Y.Y., Israfilov, R.M. Waves in a Saturated Porous Half-Space. Part 1. International Applied Mechanics 37, 520–527 (2001). https://doi.org/10.1023/A:1017924515909

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017924515909

Keywords

Navigation