Skip to main content
Log in

Electrostriction versus low frequency dielectric dispersion in PbZrO3 and PbHfO3 single crystals

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For the antiferroelectric crystals PbZrO3 and PbHfO3 pure and doped with small amount of PbTiO3 the measurements of electrostrictive strain e have been performed in paraelectric phase as a function of temperature, frequency (40–400 Hz) and strength (100–700 kV/m) of an applied electric field. In particular, compliance with quadratic relation between strain e and the electric field E (e = ME 2) in different frequency regions was examined. The observed effects for PbZrO3 and PbHfO3 were compared and discussed with previously investigated low frequency dielectric dispersion found in those antiferroelectric materials. The experiments showed that in the frequency range where the dipolar relaxation exists, the departure from the quadratic relation (e = ME 2) can be clearly observed for PbZrO3 and PZT single crystals. In all investigated single crystals (PbZrO3, PZT and PbHfO3) the dependence of strain versus electric field obeys the electrostrictive relation in the frequency range below and above dielectric relaxation observed. For frequencies beyond dielectric dispersion the electrostrictive coefficients Q 11 for all samples are temperature independent and take values typical for ferroelectric and antiferroelectric materials (i.e. Q 11 ≅ 2 × 10−2 − 3 × 10−2 m4/C2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Jonscher, “Universal Relaxation Law” (Chelsea Dielectric Press, London, 1966).

    Google Scholar 

  2. K. Roleder, I. Jankowska and J. Dec, Phase Transitions 42 (1993) 241.

    Google Scholar 

  3. I. Jankowska-Sumara, K. Roleder, J. Dec and S. Miga, J. Phys.: Condens. Matter 7 (1995) 6137.

    Google Scholar 

  4. F. Jona and G. Shirane, “Ferroelectric Crystals” (Pergamon Press Inc., Oxford, 1962).

    Google Scholar 

  5. J. F. Nye, “Physical Properties of Crystals” (Clarendon Press, Oxford, 1957).

    Google Scholar 

  6. K. Roleder, J. Phys. E: Sci. Instrum. 16 (1983) 1157.

    Google Scholar 

  7. I. Jankowska-Sumara, K. Roleder, J. Dec and S. Miga, Ferroelectrics 193 (1997) 149.

    Google Scholar 

  8. K. Roleder, Key Engineering Materials 155/156 (1998) 123.

    Google Scholar 

  9. I. Jankowska, K. Roleder and J. Dec, Ferroelectrics 150 (1993) 363.

    Google Scholar 

  10. K. Szot and W. Speier, Phys. Rev. B 60 (1999) 5909.

    Google Scholar 

  11. T. Yamada, J. Appl. Phys. 43 (1972) 2.

    Google Scholar 

  12. G. R. Bach, B. N. Achar and L. E. Cross, Ferroelectrics 35 (1981) 191.

    Google Scholar 

  13. K. Roleder, M. Maglione, M. D. Fontana, I. Jankowska-Sumara, G. E. Kugel and J. Dec, ibid. 238 (2000) 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jankowska-Sumara, I., Miga, S. & Roleder, K. Electrostriction versus low frequency dielectric dispersion in PbZrO3 and PbHfO3 single crystals. Journal of Materials Science 36, 2753–2757 (2001). https://doi.org/10.1023/A:1017921131368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017921131368

Keywords

Navigation