Skip to main content
Log in

Computational cell biology in the post-genomic era

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Rapid accumulation of biological data from novel high throughput technologies characteristic of genomic and proteomic research as well as advances in more traditional biological disciplines are leading to wider use of detailed and complex computational models of cell behavior. These models address a variety of dynamic intracellular processes ranging from interactions within a gene regulation network to intracellular and intercellular signal transduction. This review focuses on the current trends in computation cell biology, particularly emphasizing the role of experimental validation. The recent successes and future challenges facing computational cell biology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lotka AJ (1920) Undampted oscillations derived from the law of mass action. J. Amer. Chem. Soc. 42: 1595–1599

    Google Scholar 

  2. Volterra V (1926) Variazionie fluttuazioni del numero d'individui in specie animali conviventi. Mem. Acad. Lincei. 2: 31–113

    Google Scholar 

  3. Hodgkin AL & Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117: 500–544

    Google Scholar 

  4. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 58: 465–523

    Google Scholar 

  5. Gierer A & Meinhardt H (1972) A theory of biological pattern formation. Kybernetik. 12: 30–39

    Google Scholar 

  6. Bhalla US & Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science. 283: 381–387

    Google Scholar 

  7. Fussenegger M, Bailey JE & Varner J (2000) A mathematical model of caspase function in apoptosis. Nat. Biotechnol. 18: 768–774

    Google Scholar 

  8. Levchenko A, Bruck J & Sternberg PW (2000) Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA. 97: 818–823

    Google Scholar 

  9. Therrien M, Michaud NR, Rubin GM & Morrison DK (1996) KSR modulates signal propagation within theMAPK cascade. Genes. Dev. 10: 2684–2695

    Google Scholar 

  10. Denouel-Galy A, Douville EM, Warne PH, Papin C, Laugier D, Calothy G, Downward J & Eychene A (1998) Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr. Biol. 8: 46–55

    Google Scholar 

  11. von Dassow G, Meir E, Munro EM & Odell GM (2000) The segment polarity network is a robust developmental module. Nature. 406: 188–192

    Google Scholar 

  12. Endy D, You L, Yin J & Molineux IJ (2000) Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes. Proc. Natl. Acad. Sci. USA. 97: 5375–5380

    Google Scholar 

  13. Huang CY & Ferrell JE (1996) Ultrasensitivity in the mitogenactivated protein kinase cascade. Proc. Natl. Acad. Sci. USA. 93: 10078–10083.

    Google Scholar 

  14. Ferrell JE & Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280: 895–898

    Google Scholar 

  15. Barkai N & Leibler S (1997) Robustness in simple biochemical networks. Nature 387: 913–917

    Google Scholar 

  16. Alon U, Surette MG, Barkai N & Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397: 168–171

    Google Scholar 

  17. Bray D, Levin MD & Morton-Firth CJ (1998) Receptor clustering as a cellular mechanism to control sensitivity. Nature: 393: 85–88

    Google Scholar 

  18. Duke TA & Bray D (1999) Heightened sensitivity of a lattice of membrane receptors. Proc. Natl. Acad. Sci. USA. 96: 10104–10108

    Google Scholar 

  19. Shimizu TS, Le Novere N, Levin MD, Beavil AJ, Sutton BJ & Bray D (2000) Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat. Cell Biol. 2: 792–796

    Google Scholar 

  20. McAdams HH & Arkin A (1997) Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA. 94: 814–819

    Google Scholar 

  21. Arkin A, Ross J & McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149: 1633–1648

    Google Scholar 

  22. Gibson MA & Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem.A104: 1876–1889

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levchenko, A. Computational cell biology in the post-genomic era. Mol Biol Rep 28, 83–89 (2001). https://doi.org/10.1023/A:1017913813132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017913813132

Keywords

Navigation