Skip to main content
Log in

Inégalités de Faber–Krahn et Inclusion de Sobolev–Orlicz

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Equivalence is demonstrated between a generalized form of the inequality of Faber–Krahn and an inequality of Sobolev–Orlicz. Equivalences with estimates on the decay of the heat kernel and inequalities on capacities and Green's functions are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  1. Bérard, P. and Gallot, S.: ‘In egalités isopérimétriques pour l'équation de la chaleur et application à l'estimation de quelques invariants’', Séminaire Goulaouic-Meyer-Schwarz, exposé XV,Ecole polytechnique Palaiseau, 1984.

  2. Buser, P.: ‘Anote on the isoperimetric constant’, Ann. Sci. EcoleNorm. Sup. 154(1982), 213-230.

    Google Scholar 

  3. Carron, G.: ‘Inégalités isopérimétriques de Faber-Krahn et conséquences’, in ‘Actes de la table ronde de géométrie differentielle en l'honneur de M. Berger ’, Collection SMF Séminaires et Congrès, 1994.

  4. Chavel, I.: Eigenvalues in Riemannian Geometry, Academic Press, London, 1984.

    Google Scholar 

  5. Coulhon, T.: ‘Inégalités de Gagliardo-Nirenberg pour les semigroupes d'opérateurs et applications’, Potential Anal. 1(1992), 343-353.

    Google Scholar 

  6. Coulhon, T. and Saloff-Coste, L.: ‘Isopérimétrie pour les groupes et les variétés’, Rev. Mat. Iberoamericana 11(3) (1995), 687-726.

    Google Scholar 

  7. Faber, G.: ‘Beweis dass unter allen homogenen Menbranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundtonggibt’, Sitzungsber. Bayer. Akad. der Wiss. Math.-Phys., pp. 169-172, Munich, 1923.

  8. Federer, H. and Fleming, W. H.: ‘Normal and integral currents’, Ann. Math. 72(1960), 458-520.

    Google Scholar 

  9. Grigor'yan, A. A.: ‘On the existence of a Green's function on a manifold’, Russ. Math. Surv. 38(1983), 161-162.

    Google Scholar 

  10. Grigor'yan, A. A.: ‘On the existence of positive fundamental solutions of the Laplace equation on Riemannian Manifold’, Math. USSR Sbornik 56(1987), 349-357.

    Google Scholar 

  11. Grigor'yan, A. A.: ‘Heat kernel upper bounds on a complete non-compact manifold’, Rev. Mat. Iberoamericana 10(1994), 395-452.

    Google Scholar 

  12. Kaimanovich, V. A.: ‘Dirichlet norms, capacities and generalized isoperimetric inequalities for Markov operators’, Potential Anal. 1(1992), 61-82.

    Google Scholar 

  13. Krahn, E.: ‘Über eine von Raleigh formulierte Minimaleigenschaft der Kreise’, Math. Ann. 94(1924), 97-100.

    Google Scholar 

  14. Krahn, E.: ‘Über Minimaleigenschaften der Kugel in drei und mehr dimensionen’, Acta Comm. Univ. Tartu(Dorpat) A9(1926), 1-44.

    Google Scholar 

  15. Kranoslsky, M. A. and Rutitsky, Y. B.: Convex Functions and Orlicz Spaces, Noordhof, 1961.

  16. Li, P. and Yau, S. T.: ‘On the parabolic kernel of the Schrödinger operator’, Acta Math. 156(1986), 153-201.

    Google Scholar 

  17. Maz'ya, V. G.: Classes of domains and imbedding theorems for functions spaces, Soviet Math. Dokl. 2(1960), 882-885.

    Google Scholar 

  18. Stein, E. M.: ‘Topics in Harmonic Analysis related to Littlewood Paley Theory’, Ann. Math. Studies, 63, Princeton, 1970.

  19. Varopoulos, N.: ‘Hardy-Littlewood theory for semigroups’, J. Funct. Anal. 63(1985), 240-260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carron, G. Inégalités de Faber–Krahn et Inclusion de Sobolev–Orlicz. Potential Analysis 7, 555–575 (1997). https://doi.org/10.1023/A:1017913419876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017913419876

Navigation