Skip to main content
Log in

Generation of Spatially Coherent Radiation in Free-Electron Lasers with Two-Dimensional Distributed Feedback

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We study the possibility of using two-dimensional distributed feedback (DF) to generate spatially coherent radiation of ribbon and hollow relativistic electron beams whose transverse dimensions exceed the wavelength by several orders of magnitude. Such a feedback can be realized in planar and coaxial two-dimensional Bragg resonators with a two-period corrugation of their side walls. This corrugation gives rise to additional transverse (with respect to the reciprocal motion of the electrons) fluxes of electromagnetic energy which synchronize emission from different parts of the electron beam. Simulations of the onset of autooscillations in free-electron lasers (FELs) with a two-dimensional DF show the possibility of obtaining single-mode monochromatic coherent generation by beams with transverse dimensions up to 102-103 wavelengths. We also analyze the use of hybrid resonators composed of “two-dimensional” input and “one-dimensional” output Bragg mirrors. In such a scheme, the “two-dimensional” mirror ensures synchronization of the emission perpendicular to the electron beam, while reflection from the output “one-dimensional” mirror is sufficient for the self-excitation of the generator. In the case of a system closed in the transverse direction, such a scheme permits one to reduce significantly the ohmic losses resulting from the electromagnetic fluxes locked in the transverse direction. It is shown that the two-dimensional DF can also be used to synchronize radiation in a multibeam generator consisting of planar FEL modules fed by a ribbon electron beam and coupled via the transverse electromagnetic-energy fluxes which are formed by two-dimensional Bragg structures. The experimental studies aimed at realization of ultrahigh-power FELs with a two-dimensional DF are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. F. Kovalev, M. I. Petelin, and M. G. Reznikov, The Resonator [in Russian], Author's certificate No. 720592 (USSR), Bulletin of Inventions No. 9 (1980).

  2. V. L. Bratman, N. S. Ginzburg, and G. G. Denisov, Pis'ma Zh. Tekh. Fiz., 7, No. 21, 1320 (1981).

    Google Scholar 

  3. A. Yariv, Quantum Electronics [Russian translation], Sovetskoe Radio, Moscow (1980).

    Google Scholar 

  4. I. E. Botvinnik, V. L. Bratman, A. B. Volkov, N. S. Ginzburg, G. G. Denisov, M. M. Ofitserov, and M. I. Petelin, Pis'ma Zh. _ Eksp. Teor. Fiz., 35, No. 10, 418 (1982).

    Google Scholar 

  5. V. L. Bratman, G. G. Denisov, N. S. Ginzburg, and M. I. Petelin, IEEE J. Quant. Electron., 19, No. 3, 282 (1983).

    Google Scholar 

  6. K. Mima, K. Imasaki, S. Kuruma, T. Akiba, N. Ohigashi, Y. Tsunawaki, K. Tanaka, C. Yamanaka, and S. Nakai, Nucl. Instrum. Methods, Phys. Res. A, 285, 47 (1991).

    Google Scholar 

  7. T. S. Chu, F. V. Hartemann, B. G. Danly, and R. J. Temkin, Phys. Rev. Lett., 72, No. 15, 2391 (1994).

    Google Scholar 

  8. P. Zambon, W. J. Witteman, and P. J. M. Van der Slot, Nucl. Instrum. Methods, Phys. Res. A, 341, 88 (1994).

    Google Scholar 

  9. N. Yu. Peskov, N. S. Ginzburg, A. A. Kaminsky, A. K. Kaminsky, S. N. Sedykh, A. P. Sergeev, and A. S. Sergeev, Pis'ma Zh. Tekh. Fiz., 25, No. 11, 19 (1999).

    Google Scholar 

  10. A. N. Bastrikov, S. P. Bugaev, I. N. Kiselev, V. I. Koshelev, and K. N. Sukushin, Zh. Tekh. Fiz., 58, No. 3, 483 (1988).

    Google Scholar 

  11. A. V. Arzhannikov, V. S. Nikolaev, S. L. Sinitsky, and M. V. Yushkov, J. Appl. Phys., 72, No. 4, 1657 (1992).

    Google Scholar 

  12. A. V. Arzhannikov, V. B. Bobylev, V. S. Nikolaev, S. L. Sinitsky, and A. V. Tarasov, in: Proc. 10th Int. Conf. High-Power Particle Beams, San Diego, California, Vol. 1 (1994), p. 136.

  13. N. S. Ginzburg, N. Yu. Peskov, and A. S. Sergeev, Pis'ma Zh. Tekh. Fiz., 18, No. 9, 23 (1992).

    Google Scholar 

  14. N. S. Ginzburg, N. Yu. Peskov, A. S. Sergeev, A. V. Arzhannikov, and S. L. Sinitsky, Nucl. Instrum. Methods, Phys. Res. A, 358, 189 (1995).

    Google Scholar 

  15. N. S. Ginzburg, N. Yu. Peskov, and A. S. Sergeev, Radiotekh. _ Elektron., 40, No. 3, 401 (1995).

    Google Scholar 

  16. N. S. Ginzburg, N. Yu. Peskov, A. S. Sergeev, A. D. R. Phelps, I. V. Konoplev, G. R. M. Robb, A. W. Cross, A. V. Arzhannikov, and S. L. Sinitsky, Phys. Rev. E, 60, No. 1, 935 (1999).

    Google Scholar 

  17. N. S. Ginzburg, N. Yu. Peskov, and A. S. Sergeev, Opt. ommun., 112, 151 (1994).

    Google Scholar 

  18. G. G. Denisov and S. J. Cooke, in: Digest 21st Int. Conf. Infrared MM Waves, Berlin, Germany (1996), p. AT2.

  19. G. G. Denisov, V. L. Bratman, A. D. R. Phelps, amd S. V. Samsonov, IEEE Trans. Plasma Sci., 26, No. 3, 508 (1998).

    Google Scholar 

  20. N. S. Ginzburg, N. Yu. Peskov, A. S. Sergeev, A. V. Arzhannikov, and S. L. Sinitsky, Pis'ma Zh. Tekh. Fiz., 26, No. 16, 8 (2000).

    Google Scholar 

  21. N. S. Ginzburg, N. Yu. Peskov, A. S. Sergeev, A. V. Arzhannikov, and S. L. Sinitsky, Pis'ma Zh. Tekh. Fiz., 27, No. 6, 50 (2001).

    Google Scholar 

  22. A. V. Arzhannikov, M. A. Agafonov, N. S. Ginzburg, V. G. Ivanenko, P. V. Kalinin, S. A. Kuznetsov, N. Yu. Peskov, and S. L. Sinitsky, IEEE Trans. Plasma Sci., 26, No. 3, 531 (1998).

    Google Scholar 

  23. A. V. Arzhannikov, A. V. Agarin, V. B. Bobylev, N. S. Ginzburg, V. G. Ivanenko, P. V. Kalinin, S. A. Kuznetsov, N. Yu. Peskov, A. S. Sergeev, S. L. Sinitsky, and A. D. Stepanov, in: A. G. Litvak (ed.), Strong Microwaves in Plasmas. Vol. 2, Inst. Appl. Phys. Press, Nizhny Novgorod (2000), p. 802.

  24. A. V. Arzhannikov, N. V. Agarin, V. B. Bobylev, N. S. Ginzburg, V. G. Ivanenko, P. V. Kalinin, S. A. Kuznetsov, N. Yu. Peskov, A. S. Sergeev, S. L. Sinitsky, and V. D. Stepanov, Nucl. Instrum. Methods, Phys. Res. A, 445, 222 (2000).

    Google Scholar 

  25. N. Yu. Peskov, N. S. Ginzburg, G. G. Denisov, A. S. Sergeev, A. V. Arzhannikov, P. V. Kalinin, S. L. Sinitsky, V. L. Stepanov, and P. V. Petrov, Pis'ma Zh. Tekh. Fiz., 26, No. 8, 72 (2000).

    Google Scholar 

  26. A. W. Cross, N. S. Ginzburg, W. He, I. V. Konoplev, N. Yu. Peskov, A. D. R. Phelps, G. R. M. Robb, K. Ronald, A. S. Sergeev, and C. G. Whyte, in: The 22nd Int. FEL Conf., Durham, USA (2000), p. 176.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzburg, N.S., Peskov, N.Y., Sergeev, A.S. et al. Generation of Spatially Coherent Radiation in Free-Electron Lasers with Two-Dimensional Distributed Feedback. Radiophysics and Quantum Electronics 44, 494–512 (2001). https://doi.org/10.1023/A:1017909616624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017909616624

Keywords

Navigation