Skip to main content
Log in

Excitation energy transfer in Photosystem I from oxygenic organisms

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This Review discusses energy transfer pathways in Photosystem I (PS I) from oxygenic organisms. In the trimeric PS I core from cyanobacteria, the efficiency of solar energy conversion is largely determined by ultrafast excitation transfer processes in the core chlorophyll a (Chl a) antenna network and efficient photochemical trapping in the reaction center (RC). The role of clusters of Chl a in energy equilibration and photochemical trapping in the PS I core is discussed. Dimers of the longest-wavelength absorbing (red) pigments with strongest excitonic interactions localize the excitation in the PS I core antenna. Those dimers that are located closer to the RC participate in a fast energy equilibration with coupled pigments of the RC. This suggests that the function of the red pigments is to concentrate the excitation near the RC. In the PS I holocomplex from algae and higher plants, in addition to the red pigments of the core antenna, spectrally distinct red pigments are bound to the peripheral Chl a/b-binding light-harvesting antenna (LHC I), specifically to the Lhca4 subunit of the LHC I-730 complex. Intramonomeric energy equilibration between pools of Chl b and Chl a in Lhca1 and Lhca4 monomers of the LHC I-730 heterodimer are as fast as the energy equilibration processes within the PS I core. In contrast to the structural stability of the PS I core, the flexible subunit structure of the LHC I would probably determine the observed slow excitation energy equilibration processes in the range of tens of picoseconds. The red pigments in the LHC I are suggested to function largely as photoprotective excitation sinks in the peripheral antenna of PS I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson PO and Gillbro T (1995) Photophysics and dynamics of the lowest excited singlet-state in long substituted polyenes with implications to the very long-chain limit. J Chem Phys 103: 2509–2519

    Article  CAS  Google Scholar 

  • Bassi R and Simpson D (1987) Chlorophyll-protein complexes of barley Photosystem I. Eur J Biochem 163: 221–230

    Article  PubMed  CAS  Google Scholar 

  • Bassi R, Soen SY, Frank G, Zuber H and Rochaix J-D (1992) Characterization of chlorophyll a/b proteins of Photosystem I fromChlamydomonas reinhardtii. J Biol Chem 267: 25714–25721

    PubMed  CAS  Google Scholar 

  • Beddard GS (1998a) Excitations and excitons in Photosystem I. Phil Trans R Soc London 356: 421–448

    Article  CAS  Google Scholar 

  • Beddard GS (1998b) Exciton coupling in the Photosystem I reaction center. J Phys Chem B 102: 10966–10973

    Article  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford

    Google Scholar 

  • Boekema EJ, Dekker JP, van Heel MG, Rögner M, Saenger W, Witt I and Witt HT (1987) Evidence for a trimeric organisation of the Photosystem I from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217: 283–286

    Article  CAS  Google Scholar 

  • Boekema EJ, Wynn RM and Malkin R (1990) The structure of spinach Photosystem I studied by electron microscopy. Biochem Biophys Acta 1017: 49–56

    Article  CAS  Google Scholar 

  • Boekema EJ, Jensen PE, Schlodder E, van Breemen JFL, van Roon H, Scheller HV and Dekker JP (2001) Green plant Photosystem I binds light-harvesting complex on one side of the complex. Biochemistry 40: 1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in Photosystem I. Biochim Biophys Acta 1318: 322–373

    Article  CAS  Google Scholar 

  • Butler WL (1961) A far-red absorbing form of chlorophyll, in vivo. Archiv Biochem Biophys 93: 413–422

    Article  CAS  Google Scholar 

  • Byrdin M, Rimke I, Schlodder E, Stehlik and Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in Photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: Are the kinetics of the excited state decay trap-limited or transfer-limited? Biophys J 79: 992–1007

    PubMed  CAS  Google Scholar 

  • Chitnis PR (2001) Photosystem I: Function and physiology. Annu Rev Plant Physiol Plant Mol Biol 52: 593–626

    Article  PubMed  CAS  Google Scholar 

  • Chitnis VP and Chitnis PR (1993) PsaL subunit is required for the formation of Photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 336: 330–334

    Article  PubMed  CAS  Google Scholar 

  • Chitnis VP, Xu Q, Chitnis VP and Nechushtai R (1995) Function and organization of Photosystem I polypeptides. Photosynth Res 44: 23–40

    Article  CAS  Google Scholar 

  • Croce R and Bassi R (1998) The light-harvesting complex of Photosystem I: Pigment composition and stoicheometry. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 503–508. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Croce R, Zucchelli G, Garlaschi FM, Bassi R and Jennings RC (1996) Excited state equilibration in the Photosystem I lightharvesting I complex: P700 is almost isoenergetic with its antenna. Biochemistry 35: 8572–8579

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Zucchelli G, Garlaschi FM and Jennings RC (1998) A thermal broadening study of the antenna chlorophylls in PS I-200, LHC I, and PS I core. Biochemistry 37: 17355–17360

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Dorra D, Holzwarth AR and Jennings RC (2000) Fluorescence decay and spectral evolution in intact Photosystem I of higher plants. Biochemistry 21: 6341–6348

    Article  CAS  Google Scholar 

  • DiMagno L, Chan CK, Jia YW, Lang MJ, Newman JR, Mets L, Fleming GR and Haselkorn R (1995) Energy transfer and trapping in Photosystem I reaction centers from cyanobacteria. Proc Natl Acad Sci USA 92: 2715–2719

    Article  PubMed  CAS  Google Scholar 

  • Dorra D, Fromme P, Karapetyan NV and Holzwarth AR (1998) Fluorescence kinetics of Photosystem I: multiple fluorescence components. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 587–590. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Du M, Xie Xl, Jia YW, Mets L and Fleming GR (1993) Direct observation of ultrafast energy-transfer in PS I core antenna. Chem Phys Lett 201: 536–542

    Article  Google Scholar 

  • Fleming R and Van Grondelle R (1997) Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr Opin Struct Biol 7: 738–748

    Article  PubMed  CAS  Google Scholar 

  • Förster Th (1965) Delocalized excitation and excitation transfer. In: Sinanoslu O (ed) Modern Quantum Chemistry, pp 93–137. Academic Press, New York

    Google Scholar 

  • Fromme P (1996) Structure and function of Photosystem I. Curr Opin Struct Biol 6: 473–484

    Article  PubMed  CAS  Google Scholar 

  • Garczarek L, van der Staay GWM, Thomas JC and Partensky F (1998) Isolation and characterization of Photosystem I from two strains of the marine oxychlorobacterium Prochlorococcus. Photosynth Res 56: 131–141

    Article  CAS  Google Scholar 

  • Gobets B, van Amerongen H, Monshouwer R, Kruip J, Rögner M, van Grondelle R and Dekker JP (1994) Polarized site-selected fluorescence spectroscopy of isolated Photosystem I particles. Biochim Biophys Acta 1188: 75–85

    Article  CAS  Google Scholar 

  • Gobets B, Dekker JP and van Grondelle R (1998a) Transfer-to-the trap limited model of energy transfer in Photosystem I. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 503–508. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Gobets B, van Stokkum IHM, van Mourik F, Rögner M, Kruip J, Dekker JP and van Grondelle R (1998b) Time-resolved fluorescence measurements of Photosystem I from Synechocystis PCC 6803. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 571–574. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Gobets B, van Stokkum IHM, Rögner M, Kruip J, Schlodder E, Karapetyan N, Dekker JP and van Grondelle R (2001) Timeresolved fluorescence emission measurements of Photosystem I particles of various cyanobacteria: A unified compartmental model. Biophys J 81: 407–424

    PubMed  CAS  Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) Molecular Biology of Cyanobacteria, pp 179–220. Kluwer Academic Publishing, Dordrecht, The Netherlands

    Google Scholar 

  • Gradinaru CC, Pascal AA, van Mourik F, Robert B, Horton P, van Grondelle R and van Amerongen H. (1998) Ultrafast evolution of the excited states in the chlorophyll a/b complex CP29 from green plants studied by energy selective pump-probe spectroscopy. Biochemistry 37: 1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Green BR (1998) Solutions to the light-harvesting problem: Mix, match and duplicate. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 587–590. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Ann Rev Plant Physiol Mol Biol 47: 685–714

    Article  CAS  Google Scholar 

  • Guergova-Kuras M, Boudreax B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in Photosystem I. Proc Natl Acad Sci USA 98: 4437–4442

    Google Scholar 

  • Hastings G and Sivakumar V (2001) A Fourier transform infrared absorption difference spectrum associated with the reduction of A(1) in Photosystem I: Are both phylloquinones involved in electron transfer? Biochemistry 40: 3681–3689

    Article  PubMed  CAS  Google Scholar 

  • Hastings G, Kleinherenbrink AM, Lin S and Blankenship RE (1994a) Time-resolved fluorescence and absorption spectroscopy of Photosystem I. Biochemistry 33: 3185–3192

    Article  PubMed  CAS  Google Scholar 

  • Hastings G, Kleinherenbrink AM, Lin S, McHugh TJ and Blankenship RE (1994b) Observation of the reduction and reoxidation of the primary electron acceptor in Photosystem I. Biochemistry 33: 3193–3200

    Article  PubMed  CAS  Google Scholar 

  • Hastings G, Reed LJ, Lin S and Blankenship RE (1995a) Excited state dynamics in Photosystem I: Effects of detergent and excitation wavelength. Biophys J 69: 2044–2055

    PubMed  CAS  Google Scholar 

  • Hastings G, Hoshina S, Webber AN and Blankenship RE (1995b) Universality of energy and electron transfer processes in Photosystem I. Biochemistry 34: 15512–15522

    Article  PubMed  CAS  Google Scholar 

  • Haworth P, Watson JL and Arntzen CJ (1983) The detection, isolation and characterization of a light-harvesting complex which is specifically associated with Photosystem I. Biochim Biophys Acta 724: 151–158

    Article  CAS  Google Scholar 

  • Hayes JM, Matsuzaki S, Rätsep M and Small GJ (2000) Red chlorophyll a antenna states of Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Phys Chem B 104: 5625–5633

    Article  CAS  Google Scholar 

  • Hecks B, Wulf K, Breton J, Leibl W and Trissl H-W (1994) Primary charge separation in Photosystem I - a two step electrogenic charge separation connected with P700(+)A(0)(?) and P700(+)A(1)(–) formation. Biochemistry 33: 8619–8624

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth AR (1996) Data analysis of time-resolved measurements. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 75–92. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Holzwarth AR, Schatz G, Brock H and Bittersmann E (1993) Energy-transfer and charge separation kinetics in Photosystem-I.1. Picosecond transient absorption and fluorescence study of cyanobacterial Photosystem-I particles. Biophys J 64: 1813–1826

    CAS  Google Scholar 

  • Holzwarth AR, Dorra D, Muller MG and Karapetyan NV (1998) Structure-function relationships and excitation dynamics in Photosystem I. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 497–502. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Ihalainen JA, Gobets B, Sznee K, Brazzoli M, Croce R, Bassi R, van Grondelle R, Korppi-Tommola JEI and Dekker JP (2000) Evidence for two spectroscopically different dimers of lightharvesting complex I from green plants. Biochemistry 39: 8625–8631

    Article  PubMed  CAS  Google Scholar 

  • Ikegami I, Itoh S and Iwaki M (2000) Selective extraction of antenna chlorophylls, carotenoids and quinones from Photosystem I reaction center. Plant Cell Physiol 41: 1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Jansson S, Anderssen B and Scheller H (1996) Nearest-neighbor analysis of higher plant Photosystem I holocomplex. Plant Physiol 112: 409–420

    Article  PubMed  CAS  Google Scholar 

  • Jansson S, Stefansson H, Nystrom U, Gustafsson P and Albertsson P-A (1997) Antenna protein composition of PS I and PS II in thylakoid sub-domains. Biochem Biophys Acta 1320: 297–309

    Article  CAS  Google Scholar 

  • Jennings RC, Zucchelli G, Croce R, Valkunas L, Finzi L and Garlaschi FM (1997) Model studies on the excited state equilibrium perturbation due to reaction center trapping in Photosystem I. Photosynth Res 52: 245–253

    Article  CAS  Google Scholar 

  • Jensen PE, Gilpin M, Knoetzel J and Scheller HV (2000) The PS IK subunit of Photosystem I is involved in the interaction between light-harvesting complex I and the Photosystem I reaction center core. J Biol Chem 275: 24701–24708

    Article  PubMed  CAS  Google Scholar 

  • Jimenez R and Fleming GR (1996) Ultrafast spectroscopy in photosynthetic systems. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 63–73. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 angstrom resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Karapetyan NV, Dorra D, Schweitzer G, Bezsmertnaya IN and Holzwarth AR (1997) Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric Photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry 36: 13830–13837

    Article  PubMed  CAS  Google Scholar 

  • Karapetyan NV, Shubin VV and Strasser RJ (1999a) Energy exchange between the chlorophyll antenna of monomeric subunits within the Photosystem I trimeric complex of the cyanobacterium Spirulina. Photosynth Res 61: 291–301

    Article  CAS  Google Scholar 

  • Karapetyan NV, Holzwarth AR and Rögner M (1999b) The Photosystem I trimer of cyanobacteria: Molecular organization, excitation dynamics and physiological significance. FEBS Lett 460: 395–400

    Article  PubMed  CAS  Google Scholar 

  • Kennis JTM, Gobets B, van Stokkum IHM, Dekker JP, van Grondelle R and Fleming GR (2001) Light-harvesting by chlorophylls and carotenoids in the Photosystem I core complex of Synechococcus elongatus. A fluorescence upconversion study. J Phys Chem B 105: 4485–4494

    Article  CAS  Google Scholar 

  • Kleima FJ, Gradinaru CC, Calcoen F, van Stokkum IHM, van Grondelle R and van Amerongen H (1997) Energy transfer in LHC II monomers at 77 K studied by subpicosecond transient absorption spectroscopy. Biochemistry 36: 15262–15268

    Article  PubMed  CAS  Google Scholar 

  • Klug DR, Giorgi LB, Crystal B, Barber J and Porter G (1989) Energy-transfer to low-energy chlorophyll species prior to trapping by P700 and subsequent electron-transfer. Photosynth Res 22: 277–284

    Article  CAS  Google Scholar 

  • Knoetzel J, Bossmann B and Grimme LH (1998) Chlorina and viridis mutants of barley (Hordeum vulgare L.) allows assignment of long-wavelength chlorophyll forms to individual proteins of Photosystem I in vivo. FEBS Lett 436: 339–342

    Article  PubMed  CAS  Google Scholar 

  • Koehne B and Trissl H-W (1998) The cyanobacterium Spirulina platensis contains a long-wavelength absorbing pigment C-738 (F-760(77 K)) at room temperature. Biochemistry 37: 5494–5500

    Article  PubMed  CAS  Google Scholar 

  • Koehne B, Elli G, Jennings RC, Wilhelm C and Trissl H-W (1999) Spectroscopic and molecular characterization of a longwavelength absorbing antenna of Ostreobium sp. Biochim Biophys Acta 1412: 94–107

    Article  PubMed  CAS  Google Scholar 

  • Koenig F and Schmidt M (1995) Gloeobacter violaceus - investigation of an unusual photosynthetic apparatus: Absence of the long-wavelength emission of Photosystem I in 77 K fluorescence spectra. Physiol Plant 94: 621–628

    Article  CAS  Google Scholar 

  • Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT and Saenger W (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nature Struct Biol 3: 965–973

    Article  PubMed  Google Scholar 

  • Kruip J, Karapetyan NV, Terekhova IV and Rögner M (1999) In vitro oligomerization of a membrane protein complex - liposome-based reconstitution of trimeric Photosystem I from isolated monomers. J Biol Chem 274: 18181–18188

    Article  PubMed  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kumazaki S, Kandori H, Petek H, Yoshihara I and Ikegami I (1994) Primary photochemical processes in P700-enriched Photosystem I particles - trap-limited excitation decay and primary charge separation. J Phys Chem 98: 10335–10342

    Article  CAS  Google Scholar 

  • Kumazaki S, Ikegami I and Yoshihara I (1997) Excitation and electron transfer from selectively excited primary donor chlorophyll (P700) in a Photosystem I reaction center. J Phys Chem A 101: 597–604

    Article  CAS  Google Scholar 

  • Kumazaki S, Furusawa H, Yoshihara K and Ikegami I (1998) Excitation wavelength dependence of the excitation transfer in Photosystem I reaction center with reduced number of antenna chlorophylls. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 575–578. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Kumazaki S, Ikegami I, Furusawa H, Yasuda S and Yoshihara K (2001) Observation of the excited state of the primary electron donor chlorophyll (P700) and the ultrafast charge separation in the spinach Photosystem I reaction center. J Phys Chem B 105: 1093–1099

    Article  CAS  Google Scholar 

  • Laible PD, Zipfel W and Owens TG (1994) Excited state dynamics in chlorophyll-based antennae: The role of transfer equilibrium. Biophys J 66: 844–860

    PubMed  CAS  Google Scholar 

  • Laible PD, Knox RS and Owens TG (1998) Detailed balance in Förster-Dexter excitation transfer and its application in photosynthesis. J Phys Chem B 102: 1641–1648

    Article  CAS  Google Scholar 

  • Lam E, Ortiz W, Mayfield S and Malkin R (1984) Isolation and characterization of a light-harvesting chlorophyll a/b-protein complex associated with Photosystem I. Plant Physiol 74: 650–655

    PubMed  CAS  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A, Knoetzel J and Scheller HV (2000) The PS I-H subunit of Photosystem I is essential for state transition in plant photosysnthesis. Nature 408: 613–615

    Article  PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124: 31–334

    Article  Google Scholar 

  • Malkin R (1996) Photosystem I electron transfer reactions. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 313–332. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Martinsson P, Oksanen JAI, Hilgendorf M, Hynninen PH, Sundström V and Akesson E. (1999) Dynamics of ground and exited state chlorophyll a molecules in pyridine solution probed by femtosecond transient absorption spectroscopy. Chem Phys Lett 309: 386–394

    Article  CAS  Google Scholar 

  • Melis A (1996) Excitation energy transfer: Functional and dynamic aspects of Lhc (cab) proteins. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 523–538. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Melkozernov AN, Su H, Lin S, Bingham S, Webber AN and Blankenship RE (1997) Specific mutation near the primary donor in Photosystem I from Chlamydomonas reinhardtii alters the trapping time and spectroscopic properties of P700. Biochemistry 36: 2898–2907

    Article  PubMed  CAS  Google Scholar 

  • Melkozernov AN, Su H, Webber AN and Blankenship RE (1998a) Excitation energy transfer in thylakoid membranes from Chlamydomonas reinhardtii lacking chlorophyll b and with mutant Photosystem I. Photosynth Res 56: 197–207

    Article  CAS  Google Scholar 

  • Melkozernov AN, Lin S and Blankenship RE (1998b) Energy equilibration in the antenna of Photosystem I from cyanobacterium Synechocystis sp. PCC 6803. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 405–408. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Melkozernov AN, Schmid V, Schmidt GW and Blankenship RE (1998c) Energy redistribution in heterodimeric light-harvesting complex LHC I-730 of Photosystem I. J Phys Chem B 104: 8183–8189

    Article  Google Scholar 

  • Melkozernov AN, Lin S and Blankenship RE (2000a) Excitation dynamics and heterogeneity of energy equilibration in the core antenna of Photosystem I from cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 39: 1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Melkozernov AN, Lin S and Blankenship RE (2000b) Femtosecond transient spectroscopy and excitonic interactions in Photosystem I. J Phys Chem B 104: 1651–1656

    Article  CAS  PubMed  Google Scholar 

  • Melkozernov AN, Lin S, Schmid V, Paulsen H, Schmidt GW and Blankenship RE (2000c) Ultrafast excitation dynamics of low energy pigments in reconstituted peripheral light-harvesting complexes of Photosystem I. FEBS Lett 471: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Melkozernov AN, Lin S, Blankenship R and Valkunas L (2001) Spectral inhomogeneity of Photosystem I and its influence on excitation equilibration and trapping in the cyanobacterium Synechocystis sp. PCC 6803 at 77 K. Biophys J 81(2): 1144–1154

    PubMed  CAS  Google Scholar 

  • Mukerji I and Sauer K (1990) A spectroscopic study of a Photosystem I antenna complex. In: Baltcheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 321–324. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Mukerji I and Sauer K (1993) Energy transfer dynamics of an isolated light-harvesting complex of Photosystem I from spinach: Time-resolved fluorescence measurements at 295 K and 77 K. Biochem Biophys Acta 1142: 311–320

    Article  CAS  Google Scholar 

  • Nechushtai R, Eden A, Cohen Y and Klein J (1996). Introduction to Photosystem I: Reaction center function, composition and structure. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 289–311. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Pålsson L-O, Tjus SE, Andersson B and Gillbro T (1995a) Energy transfer in Photosystem I - time-resolved fluorescence of the native Photosystem I complex and its core complex. Chem Physics 194: 291–302

    Article  Google Scholar 

  • Pålsson L-O, Tjus SE, Andersson B and Gillbro T (1995b) Ultrafast energy transfer dynamics resolved in isolated spinach light-harvesting complex I and the LHC I-730 subpopulation. Biochem Biophys Acta 1230: 1–9

    Article  Google Scholar 

  • Pålsson L-O, Dekker JP, Schlodder E, Monshouwer R and van Grondelle R (1996) Polarized site-selective fluorescence spectroscopy of the long-wavelength emitting chlorophylls in isolated Photosystem I particles of Synechococcus elongatus. Photosynth Res 48: 239–246

    Article  Google Scholar 

  • Pålsson L-O, Flemming C, Gobets B, van Grondelle R, Dekker JP and Schlodder E (1998) Energy transfer and charge separation in Photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J 74: 2611–2622

    PubMed  Google Scholar 

  • Pichersky E and Jansson S (1996) The light-harvesting chlorophyll a/b-binding polypeptides and their genes in Angiosperm and Gymnosperm Species. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 507–521. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Rätsep M, Johnson TW, Chitnis PR and Small GJ (2000) The redabsorbing chlorophyll a antenna states of Photosystem I: A hole burning study of Synechocystis sp. PCC 6803 and its mutants. J Phys Chem B 104: 836–847

    Article  CAS  Google Scholar 

  • Reddy NRS, Lyle PA and Small GJ (1992) Applications of spectral hole burning spectroscopies to antenna and reaction center complexes. Photosynth Res 31: 167

    Article  CAS  Google Scholar 

  • Reinot T, Zazubovich V, Hayes JM and Small GJ (2001) New insights on persistent nonphotochemical burning and its application to photosynthetic complexes. J Phys Chem B 105: 5083–5098

    Article  CAS  Google Scholar 

  • Rivadossi A, Zucchelli G, Garlaschi FM and Jennings RC (1999) The importance of PS I chlorophyll red forms in light-harvesting by leaves. Photosynth Res 60: 209–215

    Article  CAS  Google Scholar 

  • Stewart DH, Cua A, Bocian DF and Brudvig GW (1999) Selective Raman scattering from the core chlorophylls in Photosystem I via preresonant near-infrared excitation. J Phys Chem B 103: 3758–3764

    Article  CAS  Google Scholar 

  • Satoh K and Butler WL (1978) Competition between the 735 nm fluorescence and the photochemistry of Photosystem I in chloroplasts at low temperature. Biochem Biophys Acta 502: 103–110

    Article  PubMed  CAS  Google Scholar 

  • Savikhin S, Xu W, Soukoulis V, Chitnis PR and Struve W(1999) Ultrafast primary processes in Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. Biophys J 76: 3278–3288

    PubMed  CAS  Google Scholar 

  • Savikhin S, Xu W, Chitnis PR and Struve W (2000) Ultrafast primary processes in PS I from Synechocystis sp PCC 6803: Roles of P700and A0. Biophys J 79: 1573–1586

    PubMed  CAS  Google Scholar 

  • Schaffernicht H and Junge W (1981) Analysis of the complex band spectrum of P700 based on photoselection studies with Photosystem-I particles Photochem Photobiol 34: 223–232

    CAS  Google Scholar 

  • Schlodder E, Falkenberg K, Gergeleit M and Brettel K (1998) Temperature dependence of forward and reverse electron transfer from A1, the reduced secondary electron acceptor in Photosystem I. Biochemistry 37: 9466–9476

    Article  PubMed  CAS  Google Scholar 

  • Schmid VHR, Cammarata KV, Bruns BU and Schmidt GW (1997) In vitro reconstitution of the Photosystem I light-harvesting complex LHC I-730: Heterodimerization is required for antenna pigment organization. Proc Natl Acad Sci USA 94: 7667–7672

    Article  PubMed  CAS  Google Scholar 

  • Schmid VHR, Thomé P, Rühle W, Paulsen H, Kühlbrandt W and Rogle H (2001) Chlorophyll b is involved in long-wavelength spectral properties of light-harvesting complexes LHC I and LHC II. FEBS Lett 499: 27–31

    Article  PubMed  CAS  Google Scholar 

  • Schubert W-D, Klukas O, Krauß N, Saenger W, Fromme P and Witt T (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: Comprehensive structure analysis. J Mol Biol 272: 741–769

    Article  PubMed  CAS  Google Scholar 

  • Shipman LL, Cotton TM, Norris JR and Katz JJ (1976) An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer and oligomers in solution. J Am Chem Soc 98: 8222–8230

    Article  PubMed  CAS  Google Scholar 

  • Shubin VV, Bezsmertnaya IN and Karapetyan NV (1995) Efficient energy transfer from long-wavelength antenna chlorophylls to P700 in Photosystem I complexes from Spirulina platensis. J Photochem Photobiol B 30: 153–160

    Article  CAS  Google Scholar 

  • Shuvalov VA (1990) Primary Energy Conversion at Photosynthesis. Nauka, Moscow

    Google Scholar 

  • Simpson DJ and Knoetzel J (1996) Light-harvesting complexes of plants and algae: Introduction, survey and nomenclature. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 493–506. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Soukoulis V, Savikhin S, Xu W, Chitnis PR and Struve W (1999) Electronic spectra of PS I mutants: The peripheral subunits do not bind red chlorophylls in Synechocystis sp. PCC 6803. Biophys J 76: 2711–2715

    PubMed  CAS  Google Scholar 

  • Spunda V, Cajanek M, Ilik P, Kalina J and Naus J (1997) Appearance of long-wavelength excitation form of chlorophyll a in PS I fluorescence during greening of barley leaves under continuous light. J Photochem Photobiol B 40: 149–153

    Article  CAS  Google Scholar 

  • Struve WS (1995) Vibrational equilibration in absorption difference spectra of chlorophyll a. Biophys J 69: 2739–2744

    PubMed  CAS  Google Scholar 

  • Sundström V, Pullerits T and van Grondelle R (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327–2346

    Article  Google Scholar 

  • Tjus SE, Roobol-Boza M, Pålsson L-O and Andersson B (1995) Rapid isolation of Photosystem I chlorophyll-binding proteins by anion exchange perfusion chromatography. Photosynth Res 45: 41–49

    Article  CAS  Google Scholar 

  • Trinkunas G and Holzwarth AR (1996) Kinetic modeling of exciton migration in photosynthetic systems. 3. Application of genetic algorithms to simulations of excitation dynamics in three dimensional photosystem core reaction center complexes. Biophys J 71: 351–364

    Article  PubMed  CAS  Google Scholar 

  • Trissl H-W (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section. Photosynth Res 35: 247–263

    Article  CAS  Google Scholar 

  • Trissl H-W (1997) Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P700 (+): Implications for the trapping mechanism. Photosynth Res 54: 237–240

    Article  CAS  Google Scholar 

  • Turconi S, Schweitzer G and Holzwarth AR (1993) Temperaturedependence of picosecond fluorescence kinetics of a cyanobacterial Photosystem-I particle. Photochem Photobiol 57: 113–119

    CAS  Google Scholar 

  • Turconi S, Weber N, Schweitzer G, Strotmann H and Holzwarth AR (1994) Energy transfer and charge separation kinetics in Photosystem I. 2. Picosecond fluorescence study of various PS I particles and light-harvesting complex isolated from higher plants. Biochem Biophys Acta 1187: 324–334

    Article  CAS  Google Scholar 

  • Turconi S, Kruip J, Schweitzer G, Rögner M and Holzwarth AR (1996) A comparative fluorescence kinetics study of Photosystem I monomers and trimers from Synechocystis sp. PCC 6803. Photosynth Res 49: 263–268

    Article  CAS  Google Scholar 

  • Valkunas L, Liuolia V, Dekker JP and van Grondelle R (1995) Description of energy migration and trapping in Photosystem I by a model with 2 distance scaling parameters. Photosynth Res 43: 149–154

    Article  CAS  Google Scholar 

  • van Amerongen H and van Grondelle R (2001) Understanding the energy transfer function of LHC II, the major light-harvesting complex of green plants. J Phys Chem B 105: 604–617

    Article  CAS  Google Scholar 

  • van Amerongen H, Valkunas L and van Grondelle R (2000) Photosynthetic Excitons. World Scientific Co, Singapore

    Google Scholar 

  • van Grondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biophys Biochim Acta 811: 147–195

    CAS  Google Scholar 

  • Van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    Article  Google Scholar 

  • Vrieze JP, Gast P and Hoff AJ (1992) The structure of the reaction center of Photosystem I investigated with linear-dichroic absorbance detected magnetic resonance at 1.2 K. In: Murata N (ed) Research in Photosynthesis, pp 553–556. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Webber AN and Bingham SE (1998) Structure and function of Photosystem I. In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, pp 323–348. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Webber AN, Su H, Bingham SE, Kass H, Krabben L, Kuhn M, Jordan R, Schlodder E and Lubitz W (1996) Site-directed mutations affecting the spectroscopic characteristics and midpoint potential of the primary donor in Photosystem I. Biochemistry 35: 12857–12863

    Article  PubMed  CAS  Google Scholar 

  • Westermann M, Neuschaefer-Rube O, Morschel E and Wehrmeyer W (1999) Trimeric Photosystem I complex exist in vivo in thylakoid membranes of the Synechocystis strain BO 9201 and differ in absorption characteristics from monomeric Photosystem I complexes. J Plant Physiol 155: 24–33

    CAS  Google Scholar 

  • White NTH, Beddard GS, Thorne JRG, Feehan TM, Keyes TE and Heathcote P (1996) Primary charge separation and energy transfer in the Photosystem I reaction center of higher plants. J Phys Chem 100: 12086–12099

    Article  CAS  Google Scholar 

  • Wittmershaus BP, Woolf VM and Vermaas WFJ (1992) Temperature dependence and polarization of fluorescence from Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 31: 75–87

    Article  CAS  Google Scholar 

  • Wittmershaus BP, Tran TD and Panaia B (1998) Fluorescence from low energy chlorophylls in Photosystem I of Synechocystis sp. PCC 6803 at physiological temperatures. Photosynth Res 57: 29–39

    Article  CAS  Google Scholar 

  • Woolf VM, Wittmershaus BP, Vermaas WFJ and Tran TD (1994) Resolution of low energy chlorophylls in Photosystem I of Synechocystis sp. PCC 6803 at 77 K and 295 K through fluorescence excitation anisotropy. Photosynth Res 40: 21–34

    Article  CAS  Google Scholar 

  • Yamamoto H and Bassi R (1996) Carotenoids: Localization and function. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 539–563. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melkozernov, A.N. Excitation energy transfer in Photosystem I from oxygenic organisms. Photosynthesis Research 70, 129–153 (2001). https://doi.org/10.1023/A:1017909325669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017909325669

Navigation