Skip to main content
Log in

Use of the Grüneisen Coefficient in Calculations of Temperature along the Isentrope of Elementary Substances

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A new explicit analytical formula for calculating the temperature variation of elementary solids and fluids along the isentrope is proposed. The optimality of the formula is demonstrated by calculating unloading isentropes of liquid and solid diamond under shock compression and those of solid molybdenum and gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. Walsh and R. H. Christian, "Equation of state of metals from shock wave measurements," Phys. Rev., 97, No. 6, 1544-1556 (1955).

    Google Scholar 

  2. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York (1967).

    Google Scholar 

  3. J. R. Asay and M. Shahinpoor (eds.), High-Pressure Shock Compression of Solids, Springer-Verlag, New York (1993).

    Google Scholar 

  4. R. G. McQeen, S. P. Marsh, J. W. Taylor, et al., "Equation of state of solids from shock wave measurements," in: R. Kinslow (ed.), High-Velocity Impact Phenomena, Academic Press, New York-London (1970).

    Google Scholar 

  5. L. V. Al'tshuler, A. V. Bushman, M. V. Zhernokletov, et al., "Unloading isentropes and equations of state of metals at high energy densities," Zh. Éksp. Teor. Fiz., 78, No. 2, 741-760 (1980).

    Google Scholar 

  6. V. N. Zharkov and V. P. Trubitsyn, Physics of Planet Depths [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  7. A. M. Molodets, "Free energy of diamond," Fiz. Goreniya Vzryva, 34, No. 4, 94-101 (1998).

    Google Scholar 

  8. A. M. Molodets, M. A. Molodets, and S. S. Nabatov, "Free energy of liquid diamond," Fiz. Goreniya Vzryva, 35, No. 2, 81-87 (1999).

    Google Scholar 

  9. A. M. Molodets, "Free energy and thermodynamics of shock compression of solids," Khim. Fiz., 16, No. 9, 132-141 (1997).

    Google Scholar 

  10. A. M. Molodets, M. A. Molodets, and S. S. Nabatov, "Free energy of melt metals," Teplofiz. Vys. Temp., 36, No. 6, 914-920 (1998).

    Google Scholar 

  11. A. M. Molodets and S. S. Nabatov, "Thermodynamic potentials, diagrams of state, and phase transition of tin under shock compression," Teplofiz. Vys. Temp., 38, No. 5, 741-747 (2000).

    Google Scholar 

  12. D. V. Sivukhin, Handbook on Physics [in Russian], Vol. 2, Nauka, Moscow (1975).

    Google Scholar 

  13. R. G. McQeen and S. P. Marsh, "Equation of state of 19 metals from shock wave measurements up to 2 Mbars," J. Appl. Phys., 31, No. 7, 1253 (1960).

    Google Scholar 

  14. K. A. Gschneider, "Physical properties and interrelationships of metallic and semimetallic elements," Solid State Phys., 16, 275-446 (1964).

    Google Scholar 

  15. I. V. Lomonosov, "Phase diagrams and thermodynamic properties of metals at high pressures and temperatures," Doct. Dissertation in Phys.-Math. Sci., Moscow (1999).

    Google Scholar 

  16. M. F. Gogulya and M. A. Brazhnikov, "Temperatures of detonation products of condensed explosives. Part 1. Solid explosives," Khim. Fiz., 10, No. 1, 52-63 (1994).

    Google Scholar 

  17. A. E. Sheindl in (ed.), Thermophysical Properties of Molybdenum and Its Alloys: Handbook, [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  18. M. A. Al'tshuler, S. E. Brusnikin, and E. A. Kuz'menkov, "Isotherms and Grüuneisen functions of 25 metals," Prikl. Mekh. Tekh. Fiz., No. 1, 134-146 (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molodets, A.M. Use of the Grüneisen Coefficient in Calculations of Temperature along the Isentrope of Elementary Substances. Combustion, Explosion, and Shock Waves 37, 455–460 (2001). https://doi.org/10.1023/A:1017909214815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017909214815

Keywords

Navigation