Skip to main content
Log in

Crystallization kinetics of sol-gel derived hydroxyapatite thin films

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The crystallization kinetics of sol-gel derived hydroxyapatite (HA) and tricalcium phosphate (TCP) thin films were studied to determine whether viscous sintering could be used for densification. The films were approximately 900 nm thick, and were synthesized and processed on silicon substrates. The films were fired in air in a rapid thermal annealer (RTA) for various times and the degree of crystallinity was determined by measuring the intensity of characteristic X-ray diffraction lines. The growth kinetics of HA and TCP were measured between 420 and 550 °C, and between 840 and 920 °C, respectively. Films that were subjected to an accelerated aging step before firing, exhibited a significantly lower crystallization growth rate when compared to unaged films. The aged films also became harder, as measured by nanoindentation. At temperatures above 840 °C, HA transformed into both α-and β-TCP, with the β form being dominant at lower temperatures. The activation energies for both transformations (amorphous film to HA, and HA to TCP) were determined, as were the constants for the Avrami equation. Based on the rapid crystallization kinetics observed for the amorphous film to HA transformation, densification through viscous sintering is essentially precluded in this system. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Spivak, J. Biomed. Mat. Res. 24 (1990) 1121.

    Google Scholar 

  2. D. M. Liu, H. M. Chou and J. D. Wu, J. Mat. Sci. Mat. Med. 5 (1994) 147.

    Google Scholar 

  3. C. J. Brinker and G. W. Scherer, in “Sol-Gel Science” (Academic Press Inc., Boston, 1990).

    Google Scholar 

  4. T. L. Alford, S. W. Russell, V. B. Pizziconi, J. W. Mayer, T. R. Levine, M. Nastasi, C. M. Cotell and R. C. Auyeung, MRS Proc. 356 (1994).

  5. C. M. Lopatin, T. L. Alford, V. B. Pizziconi, M. Kuan and T. Laursen, Nucl. Inst. Meth. B 145 (1998) 522.

    Google Scholar 

  6. G. W. Scherer, C. J. Brinker and E. P. Roth, J. Non. Cryst. Sol. 72 (1985) 369.

    Google Scholar 

  7. J. L. Keddie and E. P. Giannelis, J. Am. Cer. Soc. 74 (1991) 2669.

    Google Scholar 

  8. L. L. Hench and D. R. Ulrich, editors, in “Science of Ceramic Chemical Processing” (Wiley, N.Y., 1986).

    Google Scholar 

  9. C. M. Lopatin, V. B. Pizziconi, T. L. Alford and T. Laursen, Thin Solid Films 326 (1998) 227.

    Google Scholar 

  10. S. W. Russell, K. A. Luptak, C. T. A. Suchicital, T. L. Alford and V. B. Pizziconi, J. Am. Cer. Soc. 79 (1996) 837.

    Google Scholar 

  11. C. M. Lopatin, T. L. Alford, V. B. Pizziconi and T. Laursen, Materials Letters 37 (1998) 211.

    Google Scholar 

  12. Z. Conghan, J. Phalippou and J. Zarzycki, J. Non. Crys. Sol. 82 (1998) 321.

    Google Scholar 

  13. JCPDS Card No. 9-432, 1994.

  14. T. Kanazawa, in “Inorganic Phosphate Materials” (Kodansha, Tokyo, 1989) p. 82.

    Google Scholar 

  15. D. A. Porter and K. E. Easterling, in “Phase Transformations in Metals and Alloys” (Chapman & Hall, London, 1992) p. 290.

    Google Scholar 

  16. J. W. Christian, in “The Theory of Transformations in Metals and Alloys” (Pergamon, Oxford, 1975).

    Google Scholar 

  17. K. N. Tu, J. W. Mayer and L. C. Feldman, in “Electronic Thin Film Science” (McMillan Pub. Co., N.Y., 1992) p. 262.

    Google Scholar 

  18. JCPDS Card No. 9-342, 1994.

  19. JCPDS Card No. 9-169, 1994.

  20. T. Kanazawa, in “Inorganic Phosphate Materials” (Kodansha, Tokyo, 1989) p. 80.

    Google Scholar 

  21. E. D. Eanes, Calc. Tiss. Res. 5 (1970) 133.

    Google Scholar 

  22. T. Kanazawa, in “Inorganic Phosphate Materials” (Kodansha, Tokyo, 1989) p. 85.

    Google Scholar 

  23. R. Van Wazer, in “Phosphorus and Its Compounds” (Interscience Publishers, Inc. N.Y., 1958) p. 515.

    Google Scholar 

  24. P. Layrolle, A. Ito and T. Teteishi, J. Am. Cer. Soc. 81 (1998) 1421.

    Google Scholar 

  25. K. A. Gross, V. Gross and C. C. Berndt, J. Am. Cer. Soc. 81 (1998) 106.

    Google Scholar 

  26. S. Surinach, M. D. Baro, J. A. Diego, N. Clavaguera and M. T. Clavaguera-Mora, Acta Metall. Mater. 40 (1992) 37.

    Google Scholar 

  27. H. Y. Tong, B. Z. Ding, J. G. Jiang, K. Lu, T. Wang and Z. Q. Hu, J. Appl. Phys. 75 (1994) 654.

    Google Scholar 

  28. T. Yamamuro, L. L. Hench and J. Wilson, editors, in “Handbook of Bioactive Ceramics”, V. II (CRC Press, Boston, 1990) p. 8.

    Google Scholar 

  29. C. J. Brinker and G. W. Scherer, in “Sol-Gel Science” (Academic Press Inc., Boston, 1990) p. 390.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopatin, C.M., Pizziconi, V.B. & Alford, T.L. Crystallization kinetics of sol-gel derived hydroxyapatite thin films. Journal of Materials Science: Materials in Medicine 12, 767–773 (2001). https://doi.org/10.1023/A:1017908515442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017908515442

Keywords

Navigation