Skip to main content
Log in

Modeling of the Transformation of Sulfur Compounds in Oxygen Gasification of Coal Dust

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

It is shown that, owing to the presence of a large amount of Ca and Fe in the mineral part of a fuel, it is possible to substantially reduce the sulfur content in the gaseous phase and, hence, improve ecological indexes of the process under the following conditions: the content of O2 is close to the stoichiometric value for fuel gasification, the temperature is ≈(1600–1800) K, and the pressure is ≈ 10 atm or higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. N. Chistyakov (ed.), Handbook on Chemistry and Technology of Solid Combustible Resources [in Russian], Sintez, St. Petersburg (1996).

    Google Scholar 

  2. W. R. Smith and R. W. Missen, Chemical Reaction. Equilibrium Analysis. Theory and Algorithms, John Wiley, New York (1982).

    Google Scholar 

  3. L. S. Polak, M. Ya. Gol'denberg, and A. A. Levitskii, Computational Methods in Chemical Kinetics [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  4. E. P. Volkov, L. I. Zaichik, and V. A. Pershukov, Modeling the Combustion of Solid Fuels [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  5. K. M. Nicols, P. O. Hedman, L. D. Smoot, and A. U. Blackham, "Fate of coal-sulfur in laboratory-scale coal gasifier," Fuel, 68, No. 2, 243-248 (1989).

    Google Scholar 

  6. A. Attar, "Chemistry, thermodynamics and kinetics of reactions of sulfur in coal-gas reactions: a review," Fuel, 57, No. 4, 201-212 (1978).

    Google Scholar 

  7. A. K. Vnukov, Protection of Atmosphere from Discharge of Powerplants: Handbook [in Russian], Énergoizdat, Moscow (1992).

    Google Scholar 

  8. G. Ya. Gerasimov, N. A. Zhegul'skaya, I. B. Rozhdestvenskii, et al., "Thermodynamic and thermophysical properties of products of combustion and conversion of organic fuels," Mat. Model., 10, No. 8, 3-16 (1998).

    Google Scholar 

  9. G. Ya. Gerasimov, Ecological Problems in Heat Power Engineering: Modeling the Formation and Transformation of Hazardous Substances [in Russian], Izd. Mosk. Univ., Moscow (1998).

    Google Scholar 

  10. V. N. Makarov and G. Ya. Gerasimov, "Kinetic model of the medium for formation of combustible nitrogen oxides in a coal-dust are," Fiz. Goreniya Vzryva, 35, No. 2, 23-29 (1999).

    Google Scholar 

  11. M. F. Zhukov, R. A. Kalinenko, A. A. Levitskii, and L. S. Polak, Plasma Chemical Processing of Coal [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  12. T. V. Vilenskii and D. M. Khzmalyan, Dynamics of Combustion of Pulverized Fuel [in Russian], Énergiya, Moscow (1978).

    Google Scholar 

  13. E. S. Golovina, High-Temperature Combustion and Carbon Gasification [in Russian], Énergoatomizdat, Moscow (1983).

    Google Scholar 

  14. JANAF Thermochemical Tables., 2nd ed., W: NBS-37 (1971).

  15. H. K. Chelliah, "The inuence of heterogeneous kinetics and thermal radiation on oxidation of graphite particles," Combust. Flame, 104, 81-94 (1996).

    Google Scholar 

  16. V. G. Kashirskii, "Production of benzene hydrocarbons and thiophene by rapid pyrolysis of solid fuels," Khim. Tverd. Topl., No. 4, 70-72 (1986).

    Google Scholar 

  17. N. J. Pitz and C. K. Westbrook, "A comprehensive chemical kinetic reaction mechanism for the oxidation of n-butane," in: Proc. 20th Symp. (Int.) on Combustion, The Combustion Inst. (1984), pp. 831-843.

  18. D. S. Y. Hsu, C. Y. Lin, and M. C. Lin, "CO formation in early stage high temperature benzene oxidation under fuel lean conditions: Kinetics of the initiation reaction, C6H6 → C6H5 + H," ibid., pp. 623-630.

  19. M. R. Zacharian and O. I. Smith, "Experimental and numerical studies of sulfur chemistry in H2/O2/SO2 ames," Combust. Flame., 69, 125-139 (1987).

    Google Scholar 

  20. V. Ya. Basevich, V. I. Vedeneev, and V. S. Arutyunov, "Modeling laminar ames of hydrogen sulfide and carbon bisulfide," Khim. Fiz., 13, Nos. 8 and 9, 137-145 (1994).

    Google Scholar 

  21. R. H. Borgwardt and K. R. Bruce, "Effect of specific surface area on the reactivity of CaO with SO2," AIChE J. 32, 239-246 (1986).

    Google Scholar 

  22. R. Boardman and L. D. Smoot, Pollutant formation and control," in: L. D. Smoot (ed.), Fundamentals of Coal Combustion for Clean and Eficient Use, Elsevier, Amsterdam (1993), pp. 433-509.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, G.Y., Bogacheva, T.M. Modeling of the Transformation of Sulfur Compounds in Oxygen Gasification of Coal Dust. Combustion, Explosion, and Shock Waves 37, 406–412 (2001). https://doi.org/10.1023/A:1017888610272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017888610272

Keywords

Navigation