Skip to main content
Log in

Thermal decomposition of almandine garnet: Mössbauer study

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The thermal decomposition of almandine garnet from Zoltye Vody, Ukraine, has been studied using57Fe Mössbauer spectroscopy. Room temperature Mössbauer spectrum of the initial powdered sample is characterised by one doublet corresponding to Fe2+ in dodecahedral position 24c. In the room temperature spectra of all heated almandine samples, a doublet corresponding to γ-Fe2O3 nanoparticles appeared. Depending on experimental conditions (heating temperature and time), the additional spectral lines of α-Fe2O3 and ε-Fe2O3 were observed in Mössbauer spectra.

It is obvious that the thermal transformation of almandine garnet in air is related to the primary formation of γ-Fe2O3 superparamagnetic nanoparticles. γ-Fe2O3 nanoparticles are transformed into ε-Fe2O3 and consequently into α-Fe2O3 at higher temperatures. The mechanism and kinetics of the individual structural transformations depend on experimental conditions — mainly on the heating temperature and size of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Zboril:The mechanism of Fe 2O3 formation during the thermal decomposition of intermediates of FeSO4·7H2O conversion, PhD thesis, Palacky University, Olomouc, 2000, p. 118.

  2. R. Zbořil, M. Mašláň, D. Krausová, and P. Pikal: Hyperfine Interaction121–122 (1999) 497.

    Google Scholar 

  3. R. Zbořil, M. Mašláň and D. Krausová: inMössbauer Spectroscopy in Materials Science (Eds. M. Miglierini and D. Petridis). Kluwer Academic Publishers, Dordrecht, 1999, p. 49.

    Google Scholar 

  4. E. Tronc, C. Chanéac, and J. P. Jolivet: J. Solid State Chem.139 (1998) 93.

    Article  Google Scholar 

  5. S. Mitra:Applied Mössbauer Spectroscopy Pergamon Press, Oxford, 1992, p. 313.

    Google Scholar 

  6. Powder Diffraction File 1997, International Center for Diffraction Data, Pennsylvania, U.S.A.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial support from the Ministry of Education of the Czech Republic under project FRVS 154/00, from the Grant Agency of the Czech Republic under projects 202/00/0982 and 202/00/D091, is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcova, K., Mashlan, M., Zboril, R. et al. Thermal decomposition of almandine garnet: Mössbauer study. Czech J Phys 51, 749–754 (2001). https://doi.org/10.1023/A:1017618420189

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017618420189

Keywords

Navigation