Skip to main content
Log in

Growth in Crustacea – twenty years on

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Developments during the past 20 years are reviewed for four aspects of crustacean growth. These are the hormonal control of moulting, the effects of external factors on growth rate, the patterns of growth and the determination of age. Hormonal control. The nature and structure of Moult Inhibiting Hormone has been determined, though the mechanism by which it inhibits crustecdysone production is still unclear. A role in moult control by Crustacean Hyperglycaemic Hormone has been demonstrated, but needs clarification. Methyl farnesoate, a juvenile hormone like substance, occurs in Crustacea: however, a clear function as a juvenile hormone has yet to be shown. External factors. The effect of increased temperature in reducing moult increments is supported by further data. Reduced food supply causes smaller moult increments and longer intermoult periods: the latter effect is generally proportionately greater. A role for CHH in this process is hypothesised. Patterns of growth. Little advance has occurred in understanding the rationale for the diversity of growth patterns. Computer modelling offers promise, but is constrained by lack of data on natural mortality for validation. Determination of age. The basic methods available remain size frequency analysis and tagging programmes. There have been advances in technology and methods of analysis, but no major breakthrough. Novel methods include radionuclide ratios (expensive, complex and give only duration of current intermoult), lipofuschin pigment assay (promising, but needs further validation), and annular structures in the infra-cerebral organ (still very speculative).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelung, D., 1971. Untersuchungen zur Häutungsphysiologie der Decapoden Krebse am Beispiel der Strandkrabbe Carcinus maenas. Helgoländer wiss. Meeresunters. 22: 66–119.

    Google Scholar 

  • Anger, K., 1983. Temperature and the larval development of Hyas araneus L. (Decapoda: Majidae); extrapolation of laboratory data to field conditions. J. exp. mar. Biol. Ecol. 69: 203–215.

    Google Scholar 

  • Anger, K., 1984. Development and growth in larval and juvenile Hyas coarctatus (Decapoda, Majidae) reared in the laboratory. Mar. Ecol. Prog. Ser. 19: 115–123.

    Google Scholar 

  • Astthorsson, O. S. & R. Ralph, 1984. Growth and moulting of Neomysis integer (Crustacea: Mysidacea). Mar. Biol. 79: 55–61.

    Google Scholar 

  • Australian Fisheries Management Authority, 1994. Tagged fish and microchips.Aust. Fish. 53(7): 29–32.

    Google Scholar 

  • Bazin, F., 1970. Étude comparée de l'organe deutocérébral des macroures reptantia et des anomoures (Crustacés Décapodes). Arch. Zool. exp. gén. 111: 245–264.

    Google Scholar 

  • Bebbington, P. M. & E. D. Morgan, 1977. Detection and identification of moulting hormone (ecdysones) in the barnacle Balanus balanoides. Comp. Biochem. Physiol. 57B: 77–79.

    Google Scholar 

  • Belchier, M., P. M. J. Shelton & C. J. Chapman, 1994. The identi-fication and measurement of fluorescent age-pigment abundance in the brain of a crustacean (Nephrops norvegicus) by confocal microscopy. Comp. Bioch. Physiol. 108B: 157–164.

    Google Scholar 

  • Bennett, J. T. & K. K. Turekian, 1984. Radiometric ages of brachyuran crabs from the Galapagos spreading-centre hydrothermal ventfield. Limnol. Oceanogr. 29: 1088–1091.

    Google Scholar 

  • Borst, D.W., H. Laufer, M. Landau, E. S. Chang, W. A. Hertz, F. C. Baker & D. A. Schooley, 1987. Methyl farnesoate and its role in crustacean reproduction and development. Insect Biochem. 17: 1123–1127.

    Google Scholar 

  • Bryant, A. D., 1991. The life history patterns of brachyuran crabs. Ph.D. thesis, University of Liverpool: 217 pp.

  • Burkenroad, M. D., 1951. Measurement of the natural growth rates of decapod crustaceans. Proc. Annu. Gulf. Caribb. Fish. Inst. 3: 25–26.

    Google Scholar 

  • Byard, E. H., R. R. Shivers & D. E. Aiken, 1975. The mandibular organ of the lobster, Homarus americanus. Cell Tissue Res. 162: 13–22.

    Google Scholar 

  • Campbell, A., 1983. Growth of tagged American lobsters, Homarus americanus, in the Bay of Fundy. Can. J. Fish. aquat. Sci. 40: 1667–1675.

    Google Scholar 

  • Carlisle, D. B. 1957. On the hormonal inhibition of moulting in decapod Crustacea. 2. The terminal anecdysis in crabs. J. mar. biol. Ass. U.K. 36, 291–307.

    Google Scholar 

  • Cassie, R. M., 1954. Some uses of probability paper in the analysis of size frequency distributions. Aust. J. mar. Freshwat. Res. 5: 513–522.

    Google Scholar 

  • Chaix, J. C. & M. De Reggi, 1982. Ecdysteroid levels during ovarian development and embryogenesis in the spider crab Acanthonyx lunulatus. Gen. comp. Endocrinol. 47: 7–14.

    Google Scholar 

  • Chang, E. S., B. A. Sage & J. D. O'Connor, 1976. The qualitative and quantitative determination of ecdysones in tissues of the crab Pachygrapsus crassipes following moult induction. Gen. comp. Endocrinol. 30: 21–33.

    Google Scholar 

  • Charmantier, G., 1980. Controle endocrine et neuroendocrine de la mue de puberté chez les males de Sphaeroma serratum (Fabricius, 1787) (Crustacea, Isopoda, Flabellifera). Gen. comp. Endocrinol. 41: 349–364.

    Google Scholar 

  • Chittleborough, R. G.,1975. Environmental factors affecting growth and survival of juvenile western rock lobsters, Panulirus longipes (Milne Edwards). Aust. J. mar. Freshwat. Res. 26: 177–196.

    Google Scholar 

  • Costlow, J. D., 1968. Metamorphosis in crustaceans. In Etkin, W. & L. I. Gilbert (eds), Metamorphosis. Appleton, New York: 3–41.

    Google Scholar 

  • Dall, W. & M. C. Barclay, 1977. Induction of viable ecdysis in the western rock lobster by 20-hydroxyecdysone. Gen. comp. Endocrinol. 31: 323–334.

    Google Scholar 

  • Dawirs, R. R., C. Püschel & F. Schorn, 1986. Temperature and growth in Carcinus maenas L. (Decapoda: Portunidae) larvae reared in the laboratory from hatching through metamorphosis. J. exp. mar. Biol. Ecol. 100: 47–74.

    Google Scholar 

  • Engelmann, F., 1983. Vitellogenesis controlled by juvenile hormone. In Downer, R. & H. Laufer (eds), Endocrinology of Insects, 1. Liss, New York: 259–270.

    Google Scholar 

  • Ettershank, G.,1983. Age structure and cyclical annual size change in the Antarctic krill Euphausia superba. Polar Biol. 2: 189–193.

    Google Scholar 

  • Freeman, J. A. & C. K. Bartell, 1976. Some effects of the moltinhibiting hormone and 20-hydroxyecdysone upon molting in the grass shrimp, Palaemonetes pugio. Gen comp. Endocrin. 28: 131–142.

    Google Scholar 

  • Gabe, M., 1953. Sur l'existence, chez quelques Crustacés Malacostracés d'un organ comparable à la glande de mue des insects. C.r. Acad. Sci. Paris 237: 1111–1113.

    Google Scholar 

  • Gayanilo, F. C., P. Sparre & D. Pauly, 1995. The FAO-ICLARM stock assessment tools (FiSAT) user's guide. FAO Computerised Inf. Ser. (Fisheries) 8: 1–126.

    Google Scholar 

  • Grant, A., P. J. Morgan & P. J. W. Olive, 1987. Use made in marine ecology of methods for estimating demographic parameters from size/frequency data. Mar. Biol. 95: 201–208.

    Google Scholar 

  • Hampshire, R. & D. H. S. Horn, 1966. Structure of crustecdysone, a crustacean moulting hormone. Chem. Commun. 2: 37–38.

    Google Scholar 

  • Harding, J. P., 1949. The use of probability paper for the graphical analysis of polymodal frequency distributions. J. mar. biol. Ass. U.K. 28: 141–153.

    Google Scholar 

  • Hartnoll, R. G., 1963. The biology of Manx spider crabs. Proc. zool. Soc. London 141: 423–496.

    Google Scholar 

  • Hartnoll, R. G., 1972. The biology of the burrowing crab, Corystes cassivelaunus. Bijdr. Dierk. 42: 139–155.

    Google Scholar 

  • Hartnoll, R. G., 1982. Growth. In Bliss, D. E. & L. G. Abele (eds), The Biology of Crustacea, 2, Embryology, Morphology and Genetics. Academic Press, New York: 111–196.

    Google Scholar 

  • Hartnoll, R. G., 1985. Growth, sexual maturity and reproductive output. In Wenner, A. M. (ed.), Crustacean Issues. 3. Factors in Adult Growth. A.A. Balkema, Rotterdam: 101–128.

    Google Scholar 

  • Hartnoll, R. G. & P. Gould, 1988. Brachyuran life history strategies and the optimisation of egg production. In Fincham, A. A. & P. S. Rainbow (eds), Aspects of Decapod Crustacean Biology. Symp. zool. Soc. Lond. 59: 1–9.

  • Hartnoll, R. G. & H. Mohamedeen, 1987. Laboratory growth of the larvae of six British crabs. J. exp. mar. Biol. Ecol. 107: 155–170.

    Google Scholar 

  • Havens, K. J. & J. R. McConaugha, 1990. Molting in the mature female blue crab, Callinectes sapidus Rathbun. Bull. mar. Sci. 46: 37–47.

    Google Scholar 

  • Hinsch, G. W., 1972. Some factors controlling reproduction in the spider crab, Libinia emarginata. Biol. Bull. 143: 358–366.

    Google Scholar 

  • Hinsch, G.W., 1980. Effects of mandibular organ implants upon the spider crab ovary. Trans. Am. microsc. Soc. 99: 317–322.

    Google Scholar 

  • Hiwatari, T. & T. Kajihura, 1988. Experimental studies on the growth and breeding of Hyale barbicornis (Amphipoda, Crustacea) at different temperatures. Bull. Jap. Soc. Sci. Fish. 54: 39–43.

    Google Scholar 

  • Keller, R. & H.-P. Orth, 1990. Hyperglycemic neuropeptides in crustaceans. In Scanes, C. G. & M. H. Stetson (eds), Progress in Comparative Endocrinology. John Wiley & Sons, New York: 265–271.

    Google Scholar 

  • Klein Breteler, W. C. M., 1975. Laboratory experiments on the in-fluence of environmental factors on the frequency of moulting and the increase in size at mouylting of juvenile shore crabs, Carcinus maenas. Neth. J. Sea Res. 9: 100–120.

    Google Scholar 

  • Knowlton, R. E., 1974. Larval development processes and controlling factors in decapod Crustacea, with emphasis on Caridea. Thalassia Jugosl. 10: 139–158.

    Google Scholar 

  • Kunisch, M. & K. Anger, 1984. Variation in development and growth rates of larval and juvenile spider crabs Hyas araneus reared in the laboratory. Mar. Ecol. Prog. Ser. 15: 293–301.

    Google Scholar 

  • Kurata, H., 1962. Studies on the age and growth of Crustacea. Bull. Hokaido reg. Fish. Res. Lab. 24: 1–115.

    Google Scholar 

  • Lachaise, F., A. Le Roux, M. Hubert & R. Lafont, 1993. The molting gland of crustaceans: localisation, activity and endocrine control. J. crust. Biol. 13: 198–234.

    Google Scholar 

  • Latrouite, D. C., C. Talidec, J. L. Reyss & P. Nöel, 1991. New data on the growth of the Norway lobster from the Bay of Biscay (Nephrops norvegicus) by measurement of the 228Th/228Ra carapace ratio. ICES, Shell. Comm. C.M. 1991/K:39: 1–8.

    Google Scholar 

  • Laufer, H. & J. S. B. Ahl, 1995. Mating behaviour and methyl farnesoate levels in male morphotypes of the spider crab, Libinia emarginata (Leach). J. exp. mar. Biol. Ecol. 193: 15–20.

    Google Scholar 

  • Laufer, H., M. Landau, D. Borst & E. Homola, 1986. The synthesis and regulation of methyl farnesoate, a new juvenile hormone for crustacean reproduction. Adv. invert. Reprod. 4: 135–143.

    Google Scholar 

  • Laufer, H., D. Borst, F. C. Baker, C. Carrasco, M. Sinkus, C. C. Reuter, L. W. Tsai & D. A. Schooley, 1987a. The identification of a juvenile hormone-like compound in a crustacean. Science 235: 202–205.

    Google Scholar 

  • Laufer, H., M. Landau, E. Homola & D. W. Borst, 1987b. Methyl farnesoate: its site of synthesis and regulation of secretion in a juvenile crustacean. Insect Biochem. 17: 1129–1131.

    Google Scholar 

  • Laufer, H., J. S. B. Ahl & A. Sagi, 1993. The role of juvenile hormones in crustacean reproduction. Am. Zool. 33: 365–374.

    Google Scholar 

  • Laval, P., 1975. Une analyse multivariable du dévelopment au laboratoire de Phronima sedentaria (Forsk.) amphipode hypéride. Etude de l'influence de la température et de la quantité de nourriture. Ann. Inst. Océanogr. 51: 5–41.

    Google Scholar 

  • Le Foll, D., E. Brichet, J. L. Reyss & C. Lalou, 1989. Age determination of the spider crab Maja Squinado and the European lobster Homarus gammarus by 228Th/228Ra chronology: possible extension to other crustaceans. Can. J. Fish. aquat. Sci. 46: 720–724.

    Google Scholar 

  • Macdonald, P. D. M. & T. J. Pitcher, 1979. Age-groups from sizefrequency data: a versatile and efficient method of analysing distribution mixtures. J. Fish. Res. Bd Can. 36: 987–1001.

    Google Scholar 

  • McConaugha, J. R., 1985. Nutrition and larval growth. In Wenner, A. M. (ed.), Larval Growth. Crustacean Issues, 2. A.A. Balkema, Rotterdam: 127–154.

    Google Scholar 

  • Martens, K., 1985. Effects of temperature and salinity on postembryonic growth in Mytilocypris henricae (Chapman) (Crustacea, Ostracoda). J. crust. Biol., 5: 258–272.

    Google Scholar 

  • Meixner, R., 1969. Wachstum, Häutung und Fortpflanzung von Crangon crangon (L.) bei Einzelaufzucht. Ber. dt. wiss. Komm. Meeresforsch. 20: 93–111.

    Google Scholar 

  • Minagawa, M. & M. Murano, 1993. Effects of prey density on survival, feeding rate and development of zoeas of the red frog crab Ranina ranina (Crustacea, Decapoda, Raninidae). Aquaculture 113: 91–100.

    Google Scholar 

  • Mohamedeen, H. & R. G. Hartnoll, 1989a. The effect of variation in temperature and food supply on the growth of post-larval Carcinus maenas. In Klekowski, R. Z., E. Styczynska-Jurewicz & L. Falkowski (eds), Proceedings of the 21st European Marine Biology Symposium, Gdansk, 14–19 September, 1986, Poland. Polish Academy of Sciences, Wroclaw: 115–122.

    Google Scholar 

  • Mohamedeen, H. & R. G. Hartnoll, 1989b. Larval and postlarval growth of individually reared specimens of the common shore crab Carcinus maenas (L.). J. exp. mar. Biol. Ecol., 134: 1–24.

    Google Scholar 

  • Nair, K. K. C. & K. Anger, 1979. Life cycle of Corophium insidiosum (Crustacea, Amphipoda) in laboratory culture. Helgol. wiss. Meeresunters. 32: 279–294.

    Google Scholar 

  • Oh, C.-W. & R. G. Hartnoll, 2000. Effects of food supply on the growth and survival of the common shrimp, Crangon crangon (Linnaeus, 1758) (Decapoda, Caridea). Crustaceana 73: 83–99.

    Google Scholar 

  • Pauly, D. & J. F. Caddy, 1985. A modification of Bhattacharya's method for the analysis of mixtures of normal distributions. FAO Fish. Circ. 781: 1–16.

    Google Scholar 

  • Pasteur-Humbert, C., 1962. Influence de l'ablation de l'organe X (pars distalis), sur la mue, chez le crevette Palaemon (=Leander) serratus Pennant. C.r. Acad. Sci. Paris 254: 1160–1162.

    Google Scholar 

  • Perez, C., 1928. Charactères sexuels chez un crabe oxyrhynche (Macropodia rostrata L.). C.r. Acad. Sci. Paris 188: 91–93.

    Google Scholar 

  • Reeve, M. R., 1969. The laboratory culture of the prawn Palaemon serratus. Fish. Invest. London, Ser. 2 26(1): 1–38.

    Google Scholar 

  • Salama, A. J. & R. G. Hartnoll, 1992. Effects of food and feeding regime on the growth and survival of the prawn Palaemon elegans Rathke, 1837. Crustaceana 63: 11–22.

    Google Scholar 

  • Sheehy, M. R. J., 1990a. Potential of morphological lipofuscin agepigment as an index of crustacean age. Mar. Biol. 107: 439–442.

    Google Scholar 

  • Sheehy, M. R. J., 1990b. Widespread occurrence of fluorescent morphological lipofuscin in the crustacean brain. J. crust. Biol. 10: 613–622.

    Google Scholar 

  • Sheehy, M., N. Caputi, C. Chubb & M. Belchier, 1998. Use of lipofuscin for resolving cohorts of western rock lobster (Panulirus cygnus). Can. J. Fish. aquat. Sci. 55: 925–936.

    Google Scholar 

  • Shelton, P. M. J. & C. J. Chapman, 1986. A biological tag for recording moult histories in crustaceans. ICES CM 1986/K 2: 1–9.

  • Shelton, P. M. J. & C. J. Chapman, 1987. A living tag for recording moult histories in crustaceans. J. Cons. perm. int. Explor. Mer. 43: 209–215.

    Google Scholar 

  • Shelton, P. M. J. & C. J. Chapman, 1995. A moult recording tag for lobsters: field trials. ICES mar. Sci. Symp 199: 222–230.

    Google Scholar 

  • Sochasky, J. B., 1973. Failure to accelerate moulting following eyestalk ablation in decapod crustaceans: a review of the literature. Fish. Res. Bd Can. Tech. Rep. 431: 1–127.

    Google Scholar 

  • Soumoff, C. & J. D. O'Connor, 1982. Repression of Y-organ secretory activity bymoult-inhibiting hormone in the crab Pachygrapsus crassipes. Gen. comp. Endocr. 48: 432–439.

    Google Scholar 

  • Soumoff, C. & D. M. Skinner, 1983. Ecdysteroid titers during the molt cycle of the blue crab resemble those of other Crustacea. Biol. Bull. 165: 321–329.

    Google Scholar 

  • Soyez, D. & L. H. Kleinholz, 1977. Molt-inhibiting factor from the crustacean eyestalk. Gen. Comp. Endocrin. 31: 233–242.

    Google Scholar 

  • Sparre, P., 1987. Computer programs for fish stock assessment. Length-based fish stock assessment for Apple II computers. FAO Fish. Tech. Pap. 101suppl2: 1–218.

    Google Scholar 

  • Sparre, P., E. Ursin & S. C. Venema, 1989. Introduction to tropical fish stock assessment. Part 1 – Manual. FAO Fish. Tech. Pap. 306/1: 1–337.

    Google Scholar 

  • Stevenson, J. R., P. W. Armstrong, E. S. Chang & J. D. O'Connor, 1979. Ecdysone titres during the moult cycle of the crayfish Orconectes sanborni. Gen. comp. Endocrinol. 39: 20–25.

    Google Scholar 

  • Talidec, C. & J. L. Reyss, 1993. Determination of the interindividual growth variability of the Norway lobster from the Bay of Biscay (Nephrops norvegicus) by measurement of the 228Th/228Ra carapace ratio. ICES, Shell. Comm. C.M. 1993/K:28: 1–11.

    Google Scholar 

  • Tamone, S. L. & E. S. Chang, 1993. Methyl farnesoate stimulates ecdysteroid from crab Y-organs in vitro. Gen. comp. Endocrinol. 89: 425–432.

    Google Scholar 

  • Tully, O., 1993. Morphological lipofuscin (age pigment) as an indicator of age in Nephrops norvegicus and Homarus gammarus. ICES, Shell. Comm. C.M. 1993/K:18: 1–10.

    Google Scholar 

  • Turekian, K. K. & J. K. Cochran, 1981. Growth rate of a vesicomyid clam from the Galapagos spreading center. Science 214: 909–911.

    Google Scholar 

  • Van Dam, R. P. & C. E. Diez, 1997. Preliminary evaluation of plastic tag performance in Caribbean hawksbill turtles. Mar. Turtle Newsl. 76: 11–12.

    Google Scholar 

  • Van Herp, F., 1998. Molecular, cytological and physiological aspects of the crustacean hyperglycemic hormone family. In Coast, G. M. & S. G. Webster (eds), Recent Advances in Arthropod Endocrinology. University Press, Cambridge: 53–70.

    Google Scholar 

  • Vernet, G., 1976. Données actuelles sur le déterminisme de la mue chez les Crustacés. Ann. Biol. 15(3–4): 155–188.

    Google Scholar 

  • Vernet-Cornubert, G., 1961. Connaissances actuelles sur le déterminisme hormonal de la mue chez les Décapodes et étude de quelques phénomènes qui lui sont lies. Arch. Zool. exp. gén. Notes Rev. 98: 57–76.

    Google Scholar 

  • Vidal, J., 1980. Physiology of zooplankton. II. Effects of phytoplankton concentration, temperature and body size on the development and molting rates of Calanus pacificus and Pseudocalanus sp. Mar. Biol. 56: 135–146.

    Google Scholar 

  • Wahle, R. A., O. Tully & V. O'Donovan, 1996. Lipofuscin as an indicator of age in crustaceans: analysis of the pigment in the American lobster Homarus americanus. Mar. Ecol. Prog. Ser. 138: 117–123.

    Google Scholar 

  • Wainwright, G., S. G. Webster, M. C. Wilkinson, J. S. Chung & H. H. Rees, 1996. Structure and significance of mandibular organinhibiting hormone in the crab, Cancer pagurus; involvement in multihormonal regulation of growth and reproduction. J. biol. Chem. 271: 12749–12754.

    Google Scholar 

  • Webster, S. G., 1986. Neurohormonal control of ecdysteroid biosynthesis by Carcinus maenas Y-organs in vitro, and preliminary characterisation of the putative moult-inhibiting hormone (MIH). Gen. comp. Endocrin. 61: 237–247.

    Google Scholar 

  • Webster, S. G., 1991. Amino acid sequence of putative moultinhibiting hormone from the crab Carcinus maenas. Proc. roy. Soc. London B 244: 247–252.

    Google Scholar 

  • Webster, S. G., 1996. Measurement of crustacean hyperglycemic hormone levels in the edible crab Cancer pagurus during emersion stress. J. exp. Biol. 199: 1579–1585.

    Google Scholar 

  • Webster, S. G., 1998. Neuropeptides inhibiting growth and reproduction in crustaceans. In Coast, G. M. & S. G. Webster (eds), Recent Advances in Arthropod Endocrinology. University Press, Cambridge: 33–51.

    Google Scholar 

  • Webster, S. G. & H. Dircksen, 1991. Putative molt-inhibiting hormone in larvae of shore crab Carcinus maenas L.: an immunocytochemical approach. Biol. Bull. 180: 65–71.

    Google Scholar 

  • Webster, S. G. & R. Keller, 1986. Purification, characterisation and amino acid composition of the putative moult-inhibiting hormone (MIH) of Carcinus maenas (Crustacea, Decapoda). J. comp. Physiol. B 156: 617–624.

    Google Scholar 

  • Wiles, P. R. & R. Z. Guan, 1993. Studies on a new method for permanently tagging crayfish with microchip implants. In Holdich, D. M. & G. F. Warner (eds), Freshwater Crayfish – IX. University of SW Louisiana, Lafayette: 419–425.

    Google Scholar 

  • Yagi, H. & H. J. Ceccaldi, 1983. Croissance, survie et respiration des stades larvaires de Palaemon serratus (Pennant), Crustacea Decapoda, a differentes combinations de salinité et de temperature. Rapp. P.-v. Réun. Ciesm. 28: 345–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartnoll, R.G. Growth in Crustacea – twenty years on. Hydrobiologia 449, 111–122 (2001). https://doi.org/10.1023/A:1017597104367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017597104367

Navigation