Skip to main content
Log in

Real-time small angle X-ray scattering study of two-stage melt crystallization of PEEK

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report a study of dual stage crystallization and subsequent melting of Poly(etherether ketone) (PEEK) and an 80/20 blend with Poly(etherimide) (PEI) using differential scanning calorimetry (DSC) and real-time small angle X-ray scattering (SAXS). The treatment scheme involves annealing/crystallization at T 1 followed by annealing/crystallization at T 2, where either T 1 < T 2 or T 1 > T 2. The holding time during isothermal melt treatment was varied. DSC studies show there exist two endotherms when T 1 < T 2, and three endotherms when T 1 > T 2, for both PEEK and PEEK/PEI blend. Dual populations of crystals form during the first stage regardless whether T 1 < T 2 or T 1 > T 2. In the high-to-low temperature sequence, holding at the second stage causes an additional third population of crystals to grow, creating a third endotherm. As the first stage holding time increases, space available for the growth of additional crystals decreases, and the amount of crystals formed during the second stage decreases. During melting, the average long period increases while the linear stack crystallinity decreases continuously. The average crystal thickness also first increases, as the least perfect, thinnest crystals melt. Eventually, the crystal thickness levels off and begins to decline with increasing temperature. Melting of the thickest, most perfect crystals occurs most probably from the surfaces accounting for the roll-off and decrease in crystal thickness during the final stages of melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Blundell and B. N. Osborn, Polymer (1981).

  2. P. Cebe and S. D. Hong, Polymer 27 (1986) 1183.

    Google Scholar 

  3. P. Cebe, J. Materials Science 23 (1988) 3721.

    Google Scholar 

  4. D. Bassett, R. Olley and A. Al Raheil, Polymer 29 (1988) 1745.

    Google Scholar 

  5. S. Cheng, Z. Wu and B. Wunderlich, Macromolecules 20 (1987) 2802.

    Google Scholar 

  6. B. Hsiao, K. Gardner, D. Wu and B. Chu, Polymer 34 (1993) 3986.

    Google Scholar 

  7. A. Jonas, T. Russell and D. Yon, Macromolecules 28 (1995) 8491.

    Google Scholar 

  8. B. Hsiao, B. Sauer, R. Verma, H. Zachmann, S. Seifert, B. Chu and P. Harney, ibid. 28 (1995) 6931.

    Google Scholar 

  9. K. Kruger and H. Zachmann, ibid. 26 (1993) 5202.

    Google Scholar 

  10. R. Verma, V. Velikov, R. Kander, H. Marand, B. Chu and B. Hsiao, Polymer 37 (1996) 5357.

    Google Scholar 

  11. C. Fougnies, P. Damman, D. Villers, M. Dosiere and M. Koch, Macromolecules 30 (1997) 1385.

    Google Scholar 

  12. B. Hsiao and B. Sauer, J. Polym. Sci., Polym. Phys. Ed. 31 (1993) 901.

    Google Scholar 

  13. C. Fougnies, P. Damman, M. Dosiere and M. Koch,Macromolecules 30 (1997) 1392.

    Google Scholar 

  14. C. Fougnies, M. Dosiere, M. Koch and J. Roovers, ibid.31 (1998) 6266.

    Google Scholar 

  15. S. X. Lu, P. Cebe and M. Capel, ibid. 30(20) (1997) 6243.

    Google Scholar 

  16. J. S. Chung and P. Cebe, Polymer 33(11) (1992) 2312.

    Google Scholar 

  17. Idem., ibid. 33(11) (1992) 2325.

  18. P. Huo and P. Cebe, Macromolecules 25 (1992) 902.

    Google Scholar 

  19. S. X. Lu and P. Cebe, Polymer Comm. 37(21) (1996) 4857.

    Google Scholar 

  20. G. Georgiev, P. Dai, E. Oyebode, P. Cebe and M. Capel, MRS Proceedings, Symposium on Applications of Synchrotron Radiation V(2000) 137.

    Google Scholar 

  21. P. Huo and P. Cebe, Macromolecules 26 (1993) 4275.

    Google Scholar 

  22. G. Crevecoeur and G. Groeninckx, ibid. 24 (1991) 1190.

    Google Scholar 

  23. H. Chen and R. Porter, J. Polym. Sci., Polym. Phys. Ed. 31 (1993) 1845.

    Google Scholar 

  24. S. Hudson, D. Davis and A. Lovinger, Macromolecules 25 (1992) 1759.

    Google Scholar 

  25. X. Kong, F. Teng, H. Tang, L. Dong and Z. Feng, Polymer 37 (1996) 1751.

    Google Scholar 

  26. B. Hsiao, R. Verma and B. SER, J. Macromol. Sci.-Phys. B37(3) (1998) 365.

    Google Scholar 

  27. A. Jonas, D. Ivanov and D. Yon, Macromolecules 31 (1998) 5352.

    Google Scholar 

  28. C. Lee, T. Okada, H. Saito and T. Inoue, Polymer 38 (1997) 31.

    Google Scholar 

  29. O. Glatter and O. Kratky, “Small angle X-ray Scattering” (Academic Press Inc., NY, 1982).

    Google Scholar 

  30. G. R. Strobl and M. Schneider, J. Polym. Sci., Polym. Phys. Ed. 18 (1980) 1343.

    Google Scholar 

  31. Matlab Reference Guide (The MathWorks, Inc.: Natick, MA, 1992) 182.

  32. D. A. Ivanov, Roger Legras and Alain M. Jonas, Macromolecules 32 (1999) 1582.

    Google Scholar 

  33. Material Data Sheet for General Electric ULTEM (PEI), Boedeker Plastics (1999).

  34. D. Blundell and J. D'Mello, Polymer 32 (1991) 304.

    Google Scholar 

  35. S. X. Lu, P. Cebe and M. Capel, Polymer 37(14) (1996) 2999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiev, G., Dai, P.S., Oyebode, E. et al. Real-time small angle X-ray scattering study of two-stage melt crystallization of PEEK. Journal of Materials Science 36, 1349–1361 (2001). https://doi.org/10.1023/A:1017595201893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017595201893

Keywords

Navigation