Skip to main content
Log in

Howe Duality for Lie Superalgebras

  • Published:
Compositio Mathematica

Abstract

We study a dual pair of general linear Lie superalgebras in the sense of R. Howe. We give an explicit multiplicity-free decomposition of a symmetric and skew-symmetric algebra (in the super sense) under the action of the dual pair and present explicit formulas for the highest-weight vectors in each isotypic subspace of the symmetric algebra. We give an explicit multiplicity-free decomposition into irreducible gl(m|n)-modules of the symmetric and skew-symmetric algebras of the symmetric square of the natural representation of gl(m|n). In the former case, we also find explicit formulas for the highest-weight vectors. Our work unifies and generalizes the classical results in symmetric and skew-symmetric models and admits several applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brini, A., Palareti, A. and Teolis, A.: Gordan-Capelli series in superalgebras, Proc. Nat. Acad. Sci. USA 85 (1988), 1330-1333.

    Google Scholar 

  2. Berele, A. and Regev, A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. in Math. 64 (1987), 118-175.

    Google Scholar 

  3. Cheng, S.-J. and Wang, W.: Remarks on the Schur-Howe-Sergeev duality, Lett. Math. Phys. 52 (2000), 143-153.

    Google Scholar 

  4. Goodman, R. and Wallach, N.: Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  5. Howe, R.: Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570.

    Google Scholar 

  6. Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur Lectures, Israel Math. Conf. Proc. 8, Tel Aviv (1992), pp. 1-182.

    Google Scholar 

  7. Kac, V. G.: Lie superalgebras, Adv. Math. 26 (1977), 8-96.

    Google Scholar 

  8. Kashiwara, M. and Vergne, M.: On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44 (1978), 1-47.

    Google Scholar 

  9. MacDonald, I. G.: Symmetric Functions and Hall Polynomials, Oxford Math. Monogr., Clarendon Press, Oxford, 1995.

    Google Scholar 

  10. Onishchik A. L. and Vinberg, E. B.: Lie Groups and Algebraic Groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990.

    Google Scholar 

  11. Sergeev, A. N.: The tensor algebra of the identity representation as a module over the Lie superalgebras gl(n, m) and Q(n), Math. USSR Sbornik 51 (1985), 419-427.

    Google Scholar 

  12. Vinberg, E. B.: Complexity of actions of reducitive Lie groups, Funct. Anal. Appl. 20 (1986), 1-11.

    Google Scholar 

  13. Wang, W.: Dual pairs and infinite dimensional Lie algebras, In: N. Jing and K. C. Misra (eds), Recent Developments in Quantum Affine Algebras and Related Topics, Contemp. Math. 248, Amer. Math. Soc., Providence, 1999, pp. 453-469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, SJ., Wang, W. Howe Duality for Lie Superalgebras. Compositio Mathematica 128, 55–94 (2001). https://doi.org/10.1023/A:1017594504827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017594504827

Navigation