Skip to main content
Log in

Structure development in PET/PA6 microfibrillar-reinforced composites as revealed by revealed by microhardness

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Homopolymer poly(ethylene terephthalate) (PET) and nylon-6 (PA6) and a blend (1 : 1 by weight) of these polymers, were extruded as strips and ultraquenched from the melt. After zone drawing and additional annealing at temperatures, T a, of 220 or 240 °C for 5 or 25 h in vacuum, the samples were studied by scanning electron microscopy (SEM), wide-angle X-ray scattering, solubility and microhardness, H, tests. In conformity with previous studies of the same system, the present SEM observations show that mechanical drawing results in the formation of a highly oriented fibrillar structure of PET which is preserved even after annealing above the melting point of PA6. Furthermore, raising of both annealing temperature and duration up to 240 °C and 25 h, respectively, results in a strong decrease of the solubility of the PA6 fraction in formic acid (five-fold). This is attributed to intensive chemical interactions between components, drastically improving the adhesion between matrix and reinforcing microfibrils. From the dependence of H on degree of crystallinity, w c, the hardness values for completely amorphous, H a, and fully crystalline, H c, neat homopolymers were extrapolated (H a PET = 128 MPa, H c PET = 294 MPa, H a PA = 52 MPa and H c PA = 283 MPa). Using these values and applying the additive law, the H-value of the microfibrils is derived. The high value obtained for PET fibrils (360 MPa) is explained by the peculiarity in the structure formation of these microfibrils. The effect of crystal size on the formation of H is also discussed. The H-value of infinite large PA6 crystals is derived to be H = 460 MPa. It is shown that the type and extent of the mutual dispersion of the components, as well as the adhesion between them, are important factors for the proper applicability of the additive law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. UTRACKI, “Polymer Alloys and Blends” (Hanser, Munich, 1989).

    Google Scholar 

  2. M. EVSTATIEV and S. FAKIROV, Polymer 33 (1992) 877.

    Google Scholar 

  3. S. FAKIROV, M. EVSTATIEV and J. M. SCHULTZ, ibid. 34 (1993) 4669.

    Google Scholar 

  4. Idem, Macromolecules 26 (1993) 5219.

    Google Scholar 

  5. S. FAKIROV and M. EVSTATIEV, Adv. Mater. 6 (1994) 395.

    Google Scholar 

  6. M. EVSTATIEV, S. FAKIROV and K. FRIEDRICH, Appl. Compos. Mater. 2 (1995) 93.

    Google Scholar 

  7. T. SERHATKULU, B. ERMAN, I. BAHAR, S. FAKIROV, M. EVSTATIEV and D. SAPUDJIEVA, Polymer 36 (1995) 2371.

    Google Scholar 

  8. M. EVSTATIEV, N. NIKOLOV and S. FAKIROV, ibid. 37 (1996) 4455.

    Google Scholar 

  9. M. EVSTATIEV, J. M. SCHULTZ, S. PETROVICH and S. FAKIROV, Polymer, submitted.

  10. P. J. FLORY, “Principles of Polymer Chemistry” (Cornell University Press, Ithaca, NY, 1953).

    Google Scholar 

  11. S. FAKIROV, in “Solid State Behavior in Linear Polyesters and Polyamides”, edited by J. M. Schultz and S. Fakirov (Prentice Hall, Englewood Cliffs, NJ, 1990) p. 1.

    Google Scholar 

  12. M. FISCHER, in “The Interfacial Interactions in Polymeric Composites”, edited by G. Akovali (Kluwer, Dordrecht, 1992) p 415.

    Google Scholar 

  13. R. HOLSTI-MIETTINEN, J. SEPPAELAE and O. T. IKKALA, Polym. Engng Sci. 32 (1992) 868.

    Google Scholar 

  14. A. R. PADWA, ibid. 32 (1992) 1703.

    Google Scholar 

  15. F. J. BALTA CALLEJA, C. SANTA CRUZ, C. SAWATARI and T. ASANO, Macromolecules 23 (1990) 5352.

    Google Scholar 

  16. J. MARTINEZ-SALAZAR and F. J. BALTA CALLEJA, J. Mater. Sci. Lett. 4 (1985) 324.

    Google Scholar 

  17. T. A. EZQUERRA, F. J. BALTA CALLEJA, L. GIRI and Z. ROSLANIEC, J. Macromol. Sci. Phys., B36 (1997) 335.

    Google Scholar 

  18. F. ANIA, J. MARTINEZ-SALAZAR and F. J. BALTA CALLEJA, J. Mater. Sci. 24 (1989) 2934.

    Google Scholar 

  19. F. J. BALTA CALLEJA, L. GIRI, T. A. EZQUERRA, S. FAKIROV and Z. ROSLANIEC, J. Macromol. Sci. Phys., B36 (1997) 655.

    Google Scholar 

  20. T. KUNUGI, C. ICHJINOSE and A. SUZUKI, J. Appl. Polym. Sci. 31 (1981) 429.

    Google Scholar 

  21. T. KUNUGI, I. AKIYAMA and M. HASHIMOTO, Polymer 23 (1982) 1199.

    Google Scholar 

  22. S. GOGOLEWSKI, and A. J. PENNINGS, ibid. 18 (1977) 654.

    Google Scholar 

  23. B. WUNDERLICH, Polym. Engng Sci. 18 (1979) 431.

    Google Scholar 

  24. F. J. BALTA CALLEJA and C. G. VONK, “X-ray Scattering of Synthetic Polymers” (Elsevier, Amsterdam, 1989) p. 129.

    Google Scholar 

  25. F. J. BALTA CALLEJA, Adv. Polym. Sci. 66 (1985) 117.

    Google Scholar 

  26. C. SANTA CRUZ, F. J. BALTA CALLEJA, H. G. ZACHMANN and D. CHEN, J. Mater. Sci. 27 (1992) 2161.

    Google Scholar 

  27. D. HULL, “An Introduction to Composite Materials” (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  28. F. J. BALTA CALLEJA, D. R. RUEDA, J. M. AYRES DE CAMPOS and M. E. CAGIAO, J. Mater. Sci. 23 (1988) 4487.

    Google Scholar 

  29. S. FAKIROV, “Structure and Properties of Polymers” (Sofia Press, Sofia, 1985) (distributed by Martin-Nijhoff, Holland).

    Google Scholar 

  30. E. W. FISCHER and S. FAKIROV, J. Mater. Sci. 11 (1976) 1041.

    Google Scholar 

  31. S. FAKIROV, Polymer 21 (1980) 373.

    Google Scholar 

  32. S. FAKIROV, I. SEGANOV and L. PRANGOVA, Makromol. Chem. 184 (1984) 807.

    Google Scholar 

  33. E. ANDRESEN and H. G. ZACHMANN, Coll. Polym. Sci. 272 (1994) 1352.

    Google Scholar 

  34. M. KIMURA and R. S. PORTER, J. Polym. Sci. Polym. Phys. Ed. 21 (1983) 267.

    Google Scholar 

  35. M. R. KAMAL, M. A. SAHTO and L. A. UTRACKI, Polym. Engng Sci. 22 (1982) 1127.

    Google Scholar 

  36. J. DEVAUX P. GODARD and J. P. MERCIER, ibid. 22 (1982) 229.

    Google Scholar 

  37. E. GATTIGLIA, F. P. LA MANTIA, A. TARTURRO and A. VALENZA, Polym. Bull. 21 (1989) 47.

    Google Scholar 

  38. Y. TAKEDA and D. R. PAUL, Polymer 32 (1991) 2171.

    Google Scholar 

  39. K. L. L. EERSELS and G. GROENINCKX, ibid. 37 (1996) 983.

    Google Scholar 

  40. D. ROGER MOORE and L. J. MATHIAS, J. Appl. Polym. Sci. 32 (1986) 6299.

    Google Scholar 

  41. T. S. ELLIS, Polymer 33 (1992) 1469.

    Google Scholar 

  42. Idem, Macromolecules 22 (1989) 712.

    Google Scholar 

  43. A. VERMA, B. L. DEOPURA and A. K. SENGUPTA, J. Appl. Polym. Sci. 31 (1986) 747.

    Google Scholar 

  44. N. STRIBECK, H. G. ZACHMANN, R. K. BAYER and F. J. BALTA CALLEJA, J. Mater. Sci. 32 (1997) 1639.

    Google Scholar 

  45. J. PETERMANN and R. M. GOHIL, J. Mater. Sci. 14 (1979) 2260.

    Google Scholar 

  46. Idem, J. Polym. Sci. Polym. Lett. Edn 18 (1980) 781.

    Google Scholar 

  47. J. PETERMANN, Makromol. Chem. 182 (1981) 613.

    Google Scholar 

  48. J. PETERMANN, R. M. GOHIL, J. M. SCHULTZ, R. W. HENDRICKS and J. S. LIN, J. Mater. Sci. 16 (1981) 265.

    Google Scholar 

  49. J. RAU, R. M. GOHIL, J. PETERMANN and J. M. SCHULTZ, Coll. Polym. Sci. 259 (1981) 241.

    Google Scholar 

  50. R. MURRAY, H. A. DAVIS and P. TUCKER, J. Appl. Polym. Sci. Appl. Polym. Symp. 33 (1978) 177.

    Google Scholar 

  51. J. PETERMANN and U. RIECK, J. Mater. Sci. 22 (1987) 1120.

    Google Scholar 

  52. H. CHANG, J. M. SCHULTZ and R. M. GOHIL, J. Macromol. Sci. Phys. B32 (1993) 99.

    Google Scholar 

  53. J. M. SCHULTZ and J. PETERMANN, Coll. Polym. Sci. 262 (1984) 294.

    Google Scholar 

  54. DuPont de Nemours International SA, Switzerland, Brochure E-52863 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krumova, M., Fakirov, S., Calleja, F.J.B. et al. Structure development in PET/PA6 microfibrillar-reinforced composites as revealed by revealed by microhardness. Journal of Materials Science 33, 2857–2868 (1998). https://doi.org/10.1023/A:1017594021634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017594021634

Keywords

Navigation