Skip to main content
Log in

Residual Representations of Spacetime

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Spacetime is modelled by binary relations—by the classes of the automorphisms \({\text{GL(}}\mathbb{C}^2 )\) of a complex two-dimensional vector space with respect to the definite unitary subgroup U(2). In extension of Feynman propagators for particle quantum fields representing only the tangent spacetime structure, global spacetime representations are given, formulated as residues using energy–momentum distributions with the invariants as singularities. The associated quantum fields are characterized by two invariant masses—for time and position—supplementing the one mass for the definite unitary particle sector with another mass for the indefinite unitary interaction sector without asymptotic particle interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  • Becchi, C., Rouet, A., and Stora, R. (1976). Annals of Physics 98, 287.

    Google Scholar 

  • Boerner, H. (1955). Darstellungen von Gruppen, Springer, Berlin, Göttingen, Heidelberg.

    Google Scholar 

  • Finkelstein, D. R. (1996). Quantum Relativity, Springer, Berlin.

    Google Scholar 

  • Folland, G. B. (1995). A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, Ann Arbor, London, Tokyo.

    Google Scholar 

  • Gel'fand, I. M. and Shilov, G. E. (1963). Generalized Functions I: Properties and Operations, Academic Press, New York and London. (Original work published in 1958)

    Google Scholar 

  • Heisenberg, W. (1967). Einführung in die einheitliche Feldtheorie der Elementarteilchen, Hirzel, Stuttgart.

    Google Scholar 

  • Helgason, S. (1978). Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, London, Toronto, Sidney, San Francisco.

    Google Scholar 

  • Källen, G. (1952). Helvetica Physica Acta 25, 417.

    Google Scholar 

  • Lehmann, H. (1954). Nuovo Cimento 11, 342.

    Google Scholar 

  • Mackey, G. W. (1968). Induced Representations of Group and Quantum Mechanics, W. A. Benjamin, New York, Amsterdam.

    Google Scholar 

  • Peter, F. and Weyl, H. (1927). Math. Ann. 97, 737.

    Google Scholar 

  • Rickart, C. E. (1960). General Theory of Banach Algebras, D. van Nostrand, Princeton.

    Google Scholar 

  • Saller, H. (1989). Nuovo Cimento 104B, 291.

    Google Scholar 

  • Saller, H. (1993). Nuovo Cimento 106A, 469.

    Google Scholar 

  • Saller, H., Breuninger, R., and Haft, M. (1995). Nuovo Cimento 108A, 1225.

    Google Scholar 

  • Saller, H. (1997). International Journal of Theoretical Physics 36, 1033, 2783.

    Google Scholar 

  • Saller, H. (1999). International Journal of Theoretical Physics 38, 1697.

    Google Scholar 

  • Shelobenko, D. P. (1958). Doklady Akad. Nauk SSSR 121, 586.

    Google Scholar 

  • Shelobenko, D. P. (1959). Doklady Akad. Nauk SSSR 126, 482, 935.

    Google Scholar 

  • Vilenkin, N. Ja. and Klimyk, A. V. (1991). Representations of Lie Groups and Special Functions, Kluwer Academic Publishers, Dordrecht, Boston, London.

    Google Scholar 

  • Wigner, E. P. (1939). Annals of Mathematics 40, 149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saller, H. Residual Representations of Spacetime. International Journal of Theoretical Physics 40, 1209–1248 (2001). https://doi.org/10.1023/A:1017593920813

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017593920813

Keywords

Navigation