Skip to main content
Log in

Ferromanganese phases and the chemistry of contemporary seawater

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We report on a correlation between oceanic residence times of chemical elements and their enrichment in marine ferromanganese deposits. When a logarithmic plot of oceanic residence time vs. atomic number is placed above a similar plot of enrichment factor vs. atomic number, the plots exhibit a clear mirror image relationship. We suggest that this relationship is not accidental, but rather implies an important role for ferromanganese phases in the regulation of seawater chemistry, especially the residence times of the minor elements. The formation of ferromanganese phases, as nodules, crusts, particles and coatings on pelagic clays, is dependent upon oxic seawater conditions similar to those existing today. The absence of oxic conditions throughout much of geologic time insures that ferromanganese minerals would have been rare or nonexistent sedimentary deposits. If these phases are as important as contemporary residence time correlations suggest, the minor element chemistry of earlier oceans must have been radically different from that of the present. Moreover, in times of deep water stagnation over the Phanerozic, conditions would have been thermodynamically unsuitable for ferromanganese mineral formation and hence suitable for the accumulation of high concentrations of certain toxic metals. We suggest that metal poisoning resulting from deep water turnover may have contributed to some of the great marine extinctions occurring over Phanerozoic Time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpin, A. C. & D. S. Cronan, 1985a. Ferromanganese oxide deposits from the central Pacific Ocean, I. Encrustations from the Line Islands Archipelago. Geochim. Cosmochim. Acta 40: 427–436.

    Google Scholar 

  • Alpin, A. C. & D. S. Cronan, 1985b. Ferromanganese oxide deposits from the central Pacific Ocean, II. Nodules and associated sediments. Geochim. Cosmochim. Acta 59: 437–451.

    Google Scholar 

  • Bacon, M. P. & R. F. Anderson, 1982. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. J. Geophys. Res 87: 2045–2056.

    Google Scholar 

  • Balistrieri, L. S., J. W. Murray & B. Paul, 1994. The geochemical cycling of trace elements in a biogenic meromictic lake. Geochim. Cosmochim. Acta 58: 3993–4008.

    Google Scholar 

  • Baturin, G. N., 1988. The Geochemistry of Manganese and Manganese Nodules in the Ocean. D. Reidel Publishing Company, Dordrecht, The Netherlands: 342 pp.

    Google Scholar 

  • Bender, M. L., T.-L. Ku & W. S. Broecker, 1970. Accumulation rates of manganese in pelagic sediments and nodules. Earth Planet. Sci. Lett. 8: 143–48.

    Google Scholar 

  • Beny, W. B. N. & P. Wilde, 1978. Progressive ventilation of the ocean-explanation for or the distribution of the Lower Paleozoic black shales. Am. J. Sci. 278: 257–75.

    Google Scholar 

  • Bischoff, J. L. & D. Z. Piper (eds), 1979. Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Plenum Press, New York: 842 pp.

    Google Scholar 

  • Bruland, K. W., 1980. Oceanographic distributions of caimium, zinc, nickel and copper in the North Pacific. Earth Planet. Sci. Lett. 47: 176–98.

    Google Scholar 

  • Bruland, K. W., G. A. Knauer & J. W. Martin, 1978. Cadmium in northeast Pacific waters. Limnol. Oceanogr. 23: 618–25.

    Google Scholar 

  • Burdige, D. J. & J. M. Gieskes, 1983. A pore water/solid phase diagenetic model for manganese in marine sediments. Am. J. Sci. 283: 29–47.

    Google Scholar 

  • Callender, E. & C. J. Bowser, 1980. Manganese and copper geochemistry of interstitial fluids from manganese-rich sediments of the northeastern Pacific Ocean. Am. J. Sci. 280: 1063–96.

    Google Scholar 

  • Canfleld, D. E., W. J. Green & P. Nixon, 1995. 210Pb and stable lead through the redox zone of an Antarctic lake. Geochim. Cosmochim. Acta 59: 2459–68.

    Google Scholar 

  • Catts, J. G. & D. Langmuir, 1986. Adsorption of Cu, Pb and Zn by S Mn02: applicability of the site binding-surface complexation model. Appl. Geochem. 1: 255–64.

    Google Scholar 

  • Chester, R., 1990. Marine Geochemistry. Unwin Hymaii, London: 698 pp.

    Google Scholar 

  • Collier, R. W. & J. M. Edmond, 1983. Plankton compositions and trace element fluxes from the surface ocean. In: Wong, C. S., B. Boyle, K. W. Bruland, J. D. Burton & E. D. Goldberg (eds), Trace Metals in Sea Water. Plenum Press, New York: 789–809.

    Google Scholar 

  • Collier, R. W. & J. M. Edmond, 1984. The trace element geochemistry of marine biogenic particulate matter. Progr. Oceanogr. 13: 113–99.

    Google Scholar 

  • Cronan, D. S., 1974. Authigenic minerals in deep-sea sediments. In Goldbert, E. D., (ed.), The Sea. John Wiley & Sons, New York: 491–526.

    Google Scholar 

  • Cronan, D. S., 1980. Underwater Minerals. Academic Press, London: 362 pp.

    Google Scholar 

  • Davison, W., 1984. Conceptual models for transport at aredox boundary. In Stumm, W. (ed.), Chemical Processes in Lakes, John Wiley & Sons, New York: 31–53.

    Google Scholar 

  • bibitem Douglas, B., D. H. McDaniel & J. J. Alexander, 1983. Concepts and Models of Inorganic Chemistry (2nd edn). John Wiley & Sons, New York: 800 pp.

    Google Scholar 

  • Dymond, J. M., B. Lyle, D. Z. Finney, K. Piper, R. Murphy, R. Conrad & N. Pisias, 1984. Ferromanganese nodules from MANOP sites H, S and R-control of mineralogical and chemical composition by multiple accretionary processes. Geochim. Cosmochim. Acta 48: 931–49.

    Google Scholar 

  • Ebbing, D. D. & M. S. Wrighton, 1987. General Chemistry (2nd edn). Houghton Muffin, Boston: 979 pp.

    Google Scholar 

  • Elderfield, H., 1976. Hydrogenous material in marine sediments: excluding manganese nodules. In Riley, J. P. & R. Chester (eds), Chemical Oceanography (Vol. 5). Academic Press, London: 137–212.

    Google Scholar 

  • Faure, G., 1991. Principles and Applications of Inorganic Geochemistry. Macmillan, New York: 626 pp.

    Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman & V. Maynard, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim. Cosmochim. Acta 43: 1075–90.

    Google Scholar 

  • Gadde, R. R. & H. A. Laitinen, 1974. Studies of heavy metal adsorption by hydrous iron and manganese oxides. Anal. Chem. 46: 2022–26.

    Google Scholar 

  • Gibbs, R. J., 1977. Transport phases of transition metals in the Amazon and Yukon Rivers. Geol. Soc. Amer. Bull. 88: 829–43.

    Google Scholar 

  • Glasby, G. P. (ed.), 1977. Marine Manganese Deposits. Elsevier, Amsterdam: 523 pp.

    Google Scholar 

  • Goldberg, B. D., 1954. Marine geochemistry. I. Chemical scavengers of the sea. J. Geol. 62: 249–65.

    Google Scholar 

  • Green, W. J., D. E. Canfield, Y. Shengsong, K. E. Chave, T. G. Ferdelman & G. Delanois, 1993. Metal transport and release processes in Lake Vanda: the role of oxide phases. In Green, W. J. & I. E. Friedmann (eds), Biogeochemical Processes in Antarctic Lakes, AGU, Washington, DC: 145–163.

    Google Scholar 

  • Haynes, B. W., S. L. Law & D. C. Barron, 1982. Mineralogical and elemental description of Pacific manganese nodules. Bureau of Mines Ini Circ. 8906: 60 pp.

  • Honeyman, B. D., L. S. Balistrieri & J. W. Murray, 1988. Oceanic trace metal scavenging: the importance of particle concentration. Deep-Sea Res. 35: 227–46.

    Google Scholar 

  • Jacobs, L. & S. Emerson, 1982. Trace metal solubility in an anoxic fjord. Ear. Planet. Sci. Lett. 60: 237–52.

    Google Scholar 

  • Jacobs, L., S. Emerson & J. Skei, 1985. Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway. Geochim. Cosmochim. Acta 49: 1433–44.

    Google Scholar 

  • Jenne, E. A., 1968. Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe-oxides. Am. Chem. Soc. Adv. Chem. Ser. 73: 337–87.

    Google Scholar 

  • Krauskopf, K. B., 1956. Factors controlling the concentrations of thirteen rare metals in seawater. Geochim. Cosmochim. Acta 12: 61–84.

    Google Scholar 

  • Landing, W. M. & K. W. Bruland, 1987. The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim. Cosmochim. Acta 51: 29–43.

    Google Scholar 

  • Lee, G. F., 1975. Role of hydrous metal oxide in the transport of heavy metals in the environment. In Krenkel, P. A. (ed.), Procedures of the International Conference on Heavy Metals in Aquatic Environments. Pergamon Press, New York: 137–147.

    Google Scholar 

  • Li, Y.-H., 1991. Distribution patterns of elements in the ocean: A synthesis. Geochim. Cosmochim. Acta 55: 3223–40.

    Google Scholar 

  • Li, Y.-H., 1981. Ultimate removal mechanisms of elements from the ocean. Geochim. Cosmochim. Acta 45: 1659–64.

    Google Scholar 

  • Li, Y.-H., 1982. Interelement relationship in abyssal Pacific ferromanganese nodules and associated pelagic sediments. Geochim. Cosmochim. Acta 46: 1053–60.

    Google Scholar 

  • Lynn, D. C. & E. Bonatti, 1965. Mobility of manganese in diagenesis of deep-sea sediments. Mar. Geol. 3: 457–74.

    Google Scholar 

  • Manahan, S. E., 1990. Environmental Chemistry (4th edn). Lewis Publishers: 612 pp.

  • Maynard, J. B., 1983. Geochemistry of Sedimentary Ore Deposits. Springer-Verlag, New York: 305 pp.

    Google Scholar 

  • McKelvey, V, E., N. A. Wright & R.W. Rowland, 1979. Manganese nodule resources in the Northeastern Equatorial Pacific. In Bischoff, J. L. & D. Z. Piper (eds), Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Plenum Press, New York: 747–762.

    Google Scholar 

  • Pratt, R. M. & P. F. McFarlin, 1966. Manganese pavements on the Blake Plateau. Science 151: 1080–82.

    Google Scholar 

  • Richards, F. A., 1965. Anoxic basins and fjords. In Riley, J. P., & G. Skirrow (eds), Chemical Oceanography (I). Academic Press, New York: 611–645.

    Google Scholar 

  • Spencer, D. W. & P. G. Brewer, 1971. Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. J. Geophys. Res. 76: 5877–92.

    Google Scholar 

  • Spencer, D. W., P. G. Brewer & P. L. Sachs, 1972. Aspects of the distribution and trace elements composition of suspended matter in the Black Sea. Geochim. Cosmochim. Acta 36: 71–86.

    Google Scholar 

  • Sigg, L., 1987. Surface chemical aspects of the distribution and fate of metal ions in lakes. In Stumm, W. (ed.) Aquatic Surface Chemistry. John Wiley & Sons, New York: 319–349.

    Google Scholar 

  • Shaw, T. J., J. M. Gieskes & R. A. Jahnke, 1990. Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochim. Cosmochim. Acta 654: 1233–46.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1996. Aquatic Chemistry. Wiley, New York: 1022 pp.

    Google Scholar 

  • Taylor, S. R. & J. M. McClennan, 1985. The Continental Crust: its Composition and Evolution. Blackwell Scientific Publishers, Oxford: 312 pp.

    Google Scholar 

  • Von Damm, K. L., J. M. Edmond, B. Grant & C. I. Measures, 1985. Chemistry of submarine hydrothermal solution at 21 °N, East Pacific Rise. Geochim. Cosmochim. Acta 49: 2197–2220.

    Google Scholar 

  • Wedepohl, K. H., 1960. Spurenanalytische Untersuchungen an Tiefseetonen aus dem Atlantik. Geochim. Cosmochim. Acta 18: 200–31.

    Google Scholar 

  • Whitfield, M., 1979. The mean oceanic residence time (MORT) concept, a rationalization. Mar. Chem. 8: 101–23.

    Google Scholar 

  • Whitfield, M. & D. R. Turner, 1983. Chemical periodicity and the spectrum and cycling of elements In Wong, C. S. et al. (eds), Trace Metals in Seawater. Plenum Press, Yew York: 265–296.

    Google Scholar 

  • Wignall, P. B. & R. J. Twitchett, 1996. Ocean anoxia and end Permian mass extinction. Science 472: 1155–58.

    Google Scholar 

  • Wilde, P. & W. B. N. Berry, 1982. Progressive ventilation of the oceans-potential for return to anoxic conditions in the post-Paleozoic. In Schlanger, S. O. & M. B. Cita (eds), Nature and Origin of Cretaceous Carbon-Rich Facies. Academic Press, NY. New York: 209–224.

    Google Scholar 

  • Wilde, P. & W. 13. N. Berry, 1984. Destabilization of the oceanic density structure and its significance to marine 'extinction' events. Paleogeog. Paleoclimat. Paleoecology 48: 143–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, W.J., Shengsong, Y., O'Bryan, K. et al. Ferromanganese phases and the chemistry of contemporary seawater. Hydrobiologia 441, 13–23 (2000). https://doi.org/10.1023/A:1017592202720

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017592202720

Keywords

Navigation