Skip to main content
Log in

A simplified model for glass dissolution in water

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Numerical simulations of the water dissolution of a random ternary solid are presented. The three elements represent silica, soluble oxides (alkalis and boron) and quasi-insoluble oxides (Al2O3, ZrO2, Fe2O3,...). The soluble species are dissolved immediately when they are in contact with the solution. Their proportion is kept below the percolation threshold. For the other species, one introduces a model of dissolution-recondensation. It is shown that the dissolution rate constants should be dependent on the bonding environment in order to include surface tension. The condensation fluxes are proportional to the concentration of each species in solution. In the dynamic regime (no recondensation), one observes the congruent dissolution of silica and soluble species, after a short initial phase of selective extraction of the soluble species. The common rate of dissolution decreases with the proportion of insoluble species and increases sharply with that of soluble species. This is mainly due to the formation of a porous hydrated layer whose active surface area increases markedly with the proportion of soluble species. In the static regime (finite solution volume), the equilibrium solubility of silica decreases with the proportion of insoluble species and is practically independent of the proportion of soluble species. The porous hydrated layer is rearranged and almost free of soluble species. The ripening of the surface layer makes it protective and inhibits further extraction of the soluble species. These results are in general agreement with the experimental observations on the dissolution of durable glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Iler, “The Chemistry of Silica” (Wiley, New York, 1979) Ch. 1.

    Google Scholar 

  2. R. H. Doremus, “Glass Science” 2nd ed. (Wiley, New York, 1994) Ch. 13.

    Google Scholar 

  3. Z. Boksay, G. Bouquet and S. Dobos, Phys. Chem. Glasses 9 (1968) 69.

    Google Scholar 

  4. A. Paul, J. Mater. Sci. 12 (1977) 2246.

    Google Scholar 

  5. L. L. Hench and D. E. Clark, J. Non-Cryst. Solids 28 (1978) 83.

    Google Scholar 

  6. H. Scholze, ibid. 52 (1982) 91.

    Google Scholar 

  7. B. M. J. Smets and T. P. A. Lommen, Phys. Chem. Glasses 23 (1982) 83.

    Google Scholar 

  8. L. A. Chick and L. R. Pederson, Mat. Res. Symp. Proc. 26 (1984) 635.

    Google Scholar 

  9. C. M. Jantzen and M. J. Plodinec, J. Non-Cryst. Solids 67 (1984) 207.

    Google Scholar 

  10. B. Grambow, Mat. Res. Symp. Proc. 44 (1985) 15.

    Google Scholar 

  11. B. E. Sheetz, W. P. Freeborn, D. K. Smith, C. Anderson, M. Zolensky and W. B. White, ibid. 44 (1985) 129.

    Google Scholar 

  12. B. C. Bunker, G. W. Arnold, D. E. Day and P. J. Bray, J. Non-Cryst. Solids 87 (1986) 226.

    Google Scholar 

  13. B. C. Bunker, D. R. Tallant, T. J. Headley, G. L. Turner and R. J. Kirkpatrick, Phys. Chem. Glasses 29 (1988) 106.

    Google Scholar 

  14. H. Scholze, J. Non-Cryst. Solids 102 (1988) 1.

    Google Scholar 

  15. X. Feng, I. L. Pegg, A. Barkatt, P. B. Macedo, S. J. Cucinelli and S. Lai, Nucl. Tech. 85 (1989) 334.

    Google Scholar 

  16. W. L. Bourcier, D. W. Peiffer, K. G. Knauss, K. D. McKeegan and D. K. Smith, Mat. Res. Symp. Proc. 176 (1990) 209.

    Google Scholar 

  17. X. Feng, I. L. Pegg, Y. Guo, A. A. Barkatt and P. C. Macebo, ibid. 176 (1990) 383.

    Google Scholar 

  18. G. Perera and R. H. Doremus, J. Amer. Ceram. Soc. 74 (1991) 1269.

    Google Scholar 

  19. M. Kinoshita, M. Harada, Y. Sato and Y. Hariguchi, ibid. 74 (1991) 783.

    Google Scholar 

  20. T. Advocat, PhD thesis, Université Louis Pasteur, Strasbourg, France, 1991.

    Google Scholar 

  21. T. Advocat, J. L. Crovisier, E. Y. Vernaz, G. Ehret and G. Charpentier, Mat. Res. Soc. Symp. Proc. 212 (1991) 57.

    Google Scholar 

  22. E. Vernaz and J. L. Duchaussoy, Appl. Geochem. 1 (1992) 13.

    Google Scholar 

  23. S. B. Xing, I. S. Muller and I. L. Pegg, Mat. Res. Symp. Proc. 333 (1994) 549.

    Google Scholar 

  24. S. B. Xing, PhD thesis, The Catholic university of America, Washington DC, USA, 1994.

    Google Scholar 

  25. W. L. Ebert and J. J. Mazer, Mat. Res. Symp. Proc. 333 (1994) 27.

    Google Scholar 

  26. S. B. Xing, A. C. Buechele and I. L. Pegg, ibid. 333 (1994) 541.

    Google Scholar 

  27. M. Aertsens and P. Van Iseghem, ibid. 412 (1996) 271.

    Google Scholar 

  28. C. Jegou, PhD thesis Université du Languedoc, Montpellier, France, 1998.

    Google Scholar 

  29. M. Aertsens, Mat. Res. Symp. Proc. 556 (1999) 409.

    Google Scholar 

  30. O. Deruelle, O. Spalla, Ph. Barboux and J. Lambard, J. Non-Cryst. Solids 241 (2000) 237.

    Google Scholar 

  31. C. Jegou, S. Gin and F. LarchÉ, J. Nucl. Mat. 280 (2000) 216.

    Google Scholar 

  32. F. Devreux and M. Kolb, J. Non-Cryst. Solids 242 (1998) 14.

    Google Scholar 

  33. S. B. Santra, B. Sapoval, Ph. Barboux and F. Devreux, C.R. Acad. Sci (Paris) 326 (1998) 129.

    Google Scholar 

  34. P. Meakin, T. Jossang and J. Feder, Phys. Rev. E 48 (1993) 2906.

    Google Scholar 

  35. A. Hernandez-Creus, P. Carro, R. C. Salvarezza and A. J. Arvia, J. Electrochem. Soc. 142 (1995) 3806.

    Google Scholar 

  36. B. Sapoval, S. B. Santra and Ph. Barboux, Europhys. Lett. 41 (1998) 297.

    Google Scholar 

  37. D. Stauffer, “Introduction to Percolation Theory” (Taylor & Francis, London, 1985).

    Google Scholar 

  38. M. Lobanova, L. Maurer, Ph. Barboux, F. Devreux and Y. Minet, Communication to the 24th Symposium on The Scientific Basis for Nuclear Waste Management (Sydney, Australia, 28—31 August 2000), Mat. Res. Symp. Proc, to appear.

  39. J. Hoschen and R. Kopelman, Phys. Rev B 14 (1976) 3428.

    Google Scholar 

  40. B. Grambow, Communication to The International Workshop on Glass in its Disposal Environment (Bruges, Belgium, 11—14 April 2000) J. Nucl. Mat, to appear.

  41. S. Gin and E. Vernaz, Communication to the 24th Symposium on The Scientific Basis for Nuclear Waste Management (Sydney, Australia, 28—31 August 2000), Mat. Res. Symp. Proc, to appear.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Devreux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devreux, F., Barboux, P., Filoche, M. et al. A simplified model for glass dissolution in water. Journal of Materials Science 36, 1331–1341 (2001). https://doi.org/10.1023/A:1017591100985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017591100985

Keywords

Navigation