Skip to main content
Log in

The Impact of Nuclear Magnetism on Superconductivity in a Metal with Nuclear Electric Quadrupole Splitting: Indium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report the first investigation of the impact of nuclear magnetism on superconductivity in the tetragonal metal indium. We have measured the superconducting critical field Bc(T) and in its vicinity the nuclear magnetic heat capacity at ultralow temperatures, 170 μK≤T≤200 mK. We compare the measured quantities with calculations which consider the nuclear magnetic Zeeman and the dominating nuclear electric quadrupole interaction in indium. The heat capacity data support the occurence of a positive sign of the electrical field gradient at nuclear sites and in consequence the existence of a nuclear low spin ground state. Surprisingly, at lowest investigated temperatures, 170 μK≤T≤1 mK, the reduction of the critical field ΔBc(T) clearly exceeds the size of the calculated magnetization μ 0 M(Bc, T) which is limited by the nuclear low spin ground state. In all other materials the interplay of nuclear magnetism and superconductivity has been studied so far (Al, AuAl 2 , AuIn 2 , Rh, and Sn), the bare nuclear magnetization appeared as an upper limit of the reduction of the critical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Reif, Phys. Rev. 106, 208 (1957).

    Google Scholar 

  2. L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).

    Google Scholar 

  3. G. M. Androes and W. D. Knight, Phys. Rev. 121, 779 (1961).

    Google Scholar 

  4. C. Bardeen, L. Cooper, J. Schrieffer, Phys. Rev. 108, 1157 (1957).

    Google Scholar 

  5. V. L. Ginzburg, J. Exp. Theoret. Phys. (USSR) 31, 202 (1956) and Sov. Phys. JETP 4, 153 (1957).

    Google Scholar 

  6. B. T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. Lett. 1, 92 (1958) and 1, 449 (1958).

    Google Scholar 

  7. T. Herrmannsdörfer, S. Rehmann, and F. Pobell, Czech. J. Phys. 46, 2189 (1996); F. Pobell, T. Herrmannsdörfer, S. Rehmann, and W. Wendler, Czech. J. Phys. 46, 3279 (1996); S. Rehmann, T. Herrmannsdörfer, and F. Pobell, Phys. Rev. Lett. 78, 1122 (1997); T. Herrmannsdörfer, S. Rehmann, M. Seibold, and F. Pobell, J. Low Temp. Phys. 110, 405 (1998).

    Google Scholar 

  8. M. Seibold, T. Herrmannsdörfer, and F. Pobell, J. Low Temp. Phys. 110, 363 (1998).

    Google Scholar 

  9. T. Herrmannsdörfer, Physica B 280, 368 (2000).

    Google Scholar 

  10. T. Knuuttila, J. Tuoriniemi, and K. Lefmann, Phys. Rev. Lett. 85, 2573 (2000).

    Google Scholar 

  11. The result of the ongoing experiments on AuAl2 will be reported elsewhere.

  12. T. Herrmannsdörfer, P. Smeibidl, B. Schröder-Smeibidl, and F. Pobell, Phys. Rev. Lett. 74, 1665 (1995); T. Herrmannsdörfer and F. Pobell, J. Low Temp. Phys. 100, 253 (1995).

    Google Scholar 

  13. M. Kulic, A. Buzdin, and L. Bulaevskii, Phys. Rev. B 56, R 11415 (1997).

    Google Scholar 

  14. A. Dyugaev, I. Vagner, and P. Wyder, JETP Lett. 65, 810 (1997).

    Google Scholar 

  15. E. Sonin, J. Low Temp. Phys. 110, 411 (1998).

    Google Scholar 

  16. Ch. Buchal, F. Pobell, R. M. Mueller, M. Kubota, and J. R. Owers-Bradley Phys. Rev. Lett. 50, 64 (1983).

    Google Scholar 

  17. G. C. Carter, L. H. Bennett, and D. J. Kahan Metallic Shifts in NMR Part I, Pergamon Press, Oxford, New York (1977).

    Google Scholar 

  18. Y. Karaki, M. Kubota and H. Ishimoto Physica B 194–196, 461 (1994).

    Google Scholar 

  19. L. Pollack, E. N. Smith, and R. C. Richardson J. Low Temp. Phys. 106, 93 (1997).

    Google Scholar 

  20. K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, and F. Pobell J. Low Temp. Phys. 73, 101 (1988).

    Google Scholar 

  21. LR 700 mutual inductance bridge, Linear Research Inc., 5231 Cushman Place, Suite 21, San Diego, CA 92119-3910., USA.

  22. L. Pollack, E. N. Smith, J. M. Parpia, and R. C. Richardson J. Low Temp. Phys. 87, 753 (1992).

    Google Scholar 

  23. P. M. Andersen, N. S. Sullivan, B. Andraka, J. S. Xia, and E. D. Adams J. Low Temp. Phys. 89, 715 (1992).

    Google Scholar 

  24. M. Huebner, T. Wagner, S. Götz, and G. Eska Physica B 210, 484 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmannsdörfer, T., Tayurskii, D. The Impact of Nuclear Magnetism on Superconductivity in a Metal with Nuclear Electric Quadrupole Splitting: Indium. Journal of Low Temperature Physics 124, 257–269 (2001). https://doi.org/10.1023/A:1017590221423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017590221423

Keywords

Navigation