Skip to main content
Log in

Vortices Observed and to be Observed

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Linear defects are generic in continuous media. In quantum systems they appear as topological line defects which are associated with a circulating persistent current. In relativistic quantum vacuum they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids and low-density atomic Bose-Einstein condensates as quantized vortex lines. We discuss unconventional vortices in unconventional superfluids and superconductors, which have been observed or have to be observed, such as continuous singly and doubly quantized vortices in 3He-A and chiral Bose condensates; half-quantum vortices (Alice strings) in 3He-A and in nonchiral Bose condensates; Abrikosov vortices with fractional magnetic flux in chiral and d-wave superconductors; vortex sheets in 3He-A and chiral superconductors; the nexus—combined object formed by vortices and monopoles. Some properties of vortices related to the fermionic quasiparticles living in the vortex core are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Bartkowiak, S. W. J. Daley, S. N. Fisher, A. M. Guenault, G. N. Plenderleith, R. P. Haley, G. R. Pickett, & P. Skyba, Thermodynamics of the A-B phase transition and the geometry of the A-phase gap nodes in superfluid 3He at low temperatures, Phys. Rev. Lett. 833462–3465 (1999).

    Google Scholar 

  2. B. Revaz, J.-Y. Genoud, A. Junod, K. Meumaier, A. Erb, & E. Walker, Phys. Rev. Lett., 80,3364–3367 (1998).

    Google Scholar 

  3. G.E. Volovik & V.P. Mineev, 3He-A vs Bose liquid: Orbital angular momentum and orbital dynamics, Sov.Phys. JETP 54 524–530 (1981).

    Google Scholar 

  4. P. Muzikar & D. Rainer, Phys. Rev.B 27,4243 (1983).

    Google Scholar 

  5. K. Nagai J. LowTemp. Phys., 55 ,233 (1984).

    Google Scholar 

  6. G.E. Volovik, (1993) JETP Lett. 58, 469–473.

    Google Scholar 

  7. J.R. Kirtley, C.C. Tsuei, M. Rupp, et al., Phys. Rev. Lett. 76,1336 (1996).

    Google Scholar 

  8. V. Geshkenbein, A. Larkin & A. Barone, Phys. Rev.B 36 235 (1987).

    Google Scholar 

  9. G.E. Volovik & V.P. Mineev, 1976, JETP Lett. 24,561–563 (1976).

    Google Scholar 

  10. G.E. Volovik & V.P. Mineev, Current in superfluid Fermi liquids and the vortex core structure, Sou. Phys. JETP 56, 579–586 (1982).

    Google Scholar 

  11. H.B. Nielsen & M. Ninorniya, Absence of neutrinos on a lattice. I-Proof by homotopy theory, Nucl. Phys. B 18520 (1981), [Erratum-Nucl. Phys. B 195, 541 (1982)l; Nucl. Phys. B 193173 (1981).

    Google Scholar 

  12. G.E. Volovik, Superfluid analogies of cosmological phenomena., gr-qc/0005091.

  13. M. Rice, Nature 396627 (1998)

    Google Scholar 

  14. K. Ishida, H. Mukuda, Y. Kitaoka et al, Nature 396658660 (1998).

    Google Scholar 

  15. T.L. Ho, Phys. Rev. Lett. 81742 (1998).

    Google Scholar 

  16. T. Ohmi & K. Machida Bose-Einstein condensation with internal degrees of freedom in alkali atom gases, J. Phys. Soc. Jpn. 671822 (1998); T. Isoshima, M. Nakahara, T. Ohrni & K. Machida, Creation of persistent current and vortex in a Bose-Einstein condensate of alkali-metal atoms, cond-mat/9908470.

    Google Scholar 

  17. L. Onsager, NUOVO Cimento 6Suppl. 2, 249 (1949).

    Google Scholar 

  18. R.P. Feynman, Progress in Low Temp. Phys.vol. 1, ed. Gorter, C.G. (North-Holland, Amsterdam, 1955) p. 17–53.

    Google Scholar 

  19. N.D. Mermin & T.L. Ho, Circulation and angular momentum in the A phase of superfluid 3He. Phys. Rev. Lett. 36594 (1976).

    Google Scholar 

  20. P.W. Anderson & G. Toulouse, Phys. Rev. Lett. 38508 (1977).

    Google Scholar 

  21. T.L. Ho, Bose-Einstein condensates with internal degrees of freedom, talk at International Conference on Low Temperature Physics LT-22 (Helsinki, 1999).

  22. A. Achucarro & T. Vachaspati, Semilocal and Electroweak Strings, Phys. Rep. 327 347–426 (2000).

    Google Scholar 

  23. V. R. Eltsov & M. Krusius, Topological defects in 3He superfluids, in "Topolog-ical Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions", Eds. Y.M. Bunkov and H. Godfrin, Kluwer Academic Publishers, 2000, pp. 325–344.

  24. R. Blaauwgeers, V.B. Eltsov, H. Gotz, M. Krusius, J.J. Ruohio, R. Schanen & G.E. Volovik, Double-quantum vortex in superfluid 3He-A, Nature 404,471–473 (2000).

    Google Scholar 

  25. T.D.C. Bevan, A. J. Manninen, J.B. Cook, J.R. Hook, H.E. Hall, T. Vachaspati & G.E. Volovik, Nature 386689–692 (1997).

    Google Scholar 

  26. V. Ruutu, et al.Critical velocity of vortex nucleation in rotating superfluid 3He-A Phys. Rev. Lett. 795058 (1997).

    Google Scholar 

  27. M. Joyce & M. Shaposhnikov, Primordial magnetic fields, right electrons, and the abelian anomaly, Phys. Rev. Lett. 791193 (1997).

    Google Scholar 

  28. M. Giovannini & E.M. Shaposhnikov, Phys. Rev.D 572186 (1998).

    Google Scholar 

  29. U. Parts, E.V. Thuneberg, G.E. Volovik, J.H. Koivuniemi, V.M.H. Ruutu, M. Heinila, J.M. Karimaki & M. Krusius, Phys. Rev. Lett. 72 3839–3842 (1994); M. Heinila & G.E. Volovik, (1995), Physica,B 210,300–310 (1995).

    Google Scholar 

  30. A.S. Schwarz, Nucl. Phys. B 208141 (1982).

    Google Scholar 

  31. Z.K. Silagadze, TEV scale gravity, mirror universe, and... dinosaurs, hep ph/0002255; Z.K. Silagadze, Mod. Phys. Lett. A14, 2321–2328 (1999).

    Google Scholar 

  32. H.Y. Kee, Y.B. Kim & K. Maki, Half-quantum vortex and drsoliton in SrzRu04, cond-rnat/0005510.

  33. G.E. Volovik, Monopoles and fractional vortices in chiral superconductors, Proc. Natl. Acad. Sc. USA 972431–2436 (2000).

    Google Scholar 

  34. G.E. Volovik & L.P. Gor'kov, JETP Lett. 39674–677 (1984).

    Google Scholar 

  35. M. Sigrist, T.M. Rice & K. Ueda, Phys. Rev. Lett. 63, 1727–1730 (1989)

    Google Scholar 

  36. M. Sigrist, D.B. Bailey & R.B. Laughlin, Phys. Rev. Lett. 743249–3252 (1995).

    Google Scholar 

  37. G.E. Volovik & L.P. Gor'kov, Superconductivity classes in the heavy fermion systems, Sov. Phys. JETP 61843–854 (1985).

    Google Scholar 

  38. E. Shung, T.F. Rosenbaum & M. Sigrist, Phys. Rev. Lett. 80107–1981 (1998).

    Google Scholar 

  39. S. Blaha Phys. Rev.Lett. 36874 (1976).

    Google Scholar 

  40. G.E. Volovik & V.P. Mineev, Vortices with free ends in superfluid 3He-A, JETP Lett. 23593–596 (1976).

    Google Scholar 

  41. J.M. Cornwall, Phys. Rev.D 59125015 (1999).

    Google Scholar 

  42. Y. Nambu String-like configurations in the Weinberg-Salam theory, Nucl. Phys. B 130505 (1977).

    Google Scholar 

  43. K.P. Marzlin, W. Zhang & B.C. Sanders, Creation of skyrmions in a spinor Bose-Einstein condensate, cond-mat/0003273.

  44. U. Leonhardt & G.E. Volovik, How to create Alice string (half-quantum vortex) in a vector BoseEinstein condensate, Pisma ZhETF 7266–70 (2000).

    Google Scholar 

  45. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 832498 (1999).

    Google Scholar 

  46. R. Jackiw & C. Rebby, Phys. Rev. Lett. 361116 (1976).

    Google Scholar 

  47. C. Caroli, P.G. de Gennes & J. Matricon, Phys. Lett. 9307 (1964).

    Google Scholar 

  48. G.E. Volovik, Gapless fermionic excitations on the quantized vortices in super-fluids and superconductors, JETP Lett. 49391–395 (1989).

    Google Scholar 

  49. Yu.G. Makhlin & G.E. Volovik, One-dimensional Fermi liquid and symmetry breaking in the vortex core, JETP Lett. 62, 737–744 (1995).

    Google Scholar 

  50. S.G. Naculich, Ferrnions destabilize electroweak strings, Phys. Rev. Lett. 75 998–1001 (1995).

    Google Scholar 

  51. A. Vishwanath & T. Senthil, Luttinger liquid physics in the superconductor vortex core, cond-mat/0001003.

  52. N.B. Kopnin & M.M. Salomaa, Phys. Rev. B449667 (1991).

    Google Scholar 

  53. G.E. Volovik, Fermion zero modes on vortices in chiral superconductors, JETP Lett. 70609–614 (1999).

    Google Scholar 

  54. N. Read & D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries, and the fractional quantum Hall effect, Phys. Rev. B61 ,10267–10297 (2000).

    Google Scholar 

  55. D.A. Ivanov, Non-Abelian statistics of half-quantum vortices in pwave super-conductors, cond-mat/0005069.

  56. S. Bravyi & A. Kitaev, Fermionic quantum computation, quant-ph/0003137.

  57. J. Goryo, Vortex with fractional quantum numbers in a chiral pwave supercon-ductor, Phys. Rev.B 614222 (2000).

    Google Scholar 

  58. K. Ishikawa & T. Matsuyama, Z.Phys. C 3341 (1986); Nuclear PhysicsB 280,532 (1987).

    Google Scholar 

  59. G.E. Volovik & V.M. Yakovenko, Fkactional charge, spin and statistics of soli-tons in superfluid 3He film, J. Phys.: Cond. Matter 1,5263 (1989).

    Google Scholar 

  60. V.M. Yakovenko, Spin, statistics and charge of solitons in (2+1)-dimensional theories, Fizika (Zagreb) 21suppl. 3, 231 (1989) [cond-mat/9703195].

    Google Scholar 

  61. T. Senthil, J.B. Marston & M.P.A. Fisher, Phys. Rev. B 60,4245 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volovik, G.E. Vortices Observed and to be Observed. Journal of Low Temperature Physics 121, 357–366 (2000). https://doi.org/10.1023/A:1017589327439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017589327439

Keywords

Navigation